
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

WEB SYNDICATION IN A MULTILEVEL SECURITY
ENVIRONMENT

by

Avner Biblarz

March 2012

Thesis Co-Advisors: Mark Gondree
Zachary Peterson

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

29–3–2012 Master’s Thesis 2011-06-23—2012-03-29

Web Syndication in a Multilevel Security Environment

Avner Biblarz

Naval Postgraduate School
Monterey, CA 93943

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

In this thesis, we demonstrate the feasibility of a novel multilevel web application that merges the ability to share sensitive
information with cutting-edge Web 2.0 communication paradigms: we develop a multilevel web aggregation service, allowing
web content at various classifications to be gathered together and browsed. The architecture supports read-down across
subscriptions, supports receiving near-real-time delivery of new low web content to high subjects and demonstrates several
thoughtful, ergonomic user interfaces relevant in a multilevel security context. The architecture was prototyped and evaluated
using the current Monterey Security Architecture (MYSEA) research system.

Unclassified Unclassified Unclassified UU 95

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

WEB SYNDICATION IN A MULTILEVEL SECURITY ENVIRONMENT

Avner Biblarz
Civilian, Naval Postgraduate School

B.A., Economics, University of California at Berkeley, 2001
B.A., Applied Mathematics, University of California at Berkeley, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2012

Author: Avner Biblarz

Approved by: Mark Gondree
Thesis Co-Advisor

Zachary Peterson
Thesis Co-Advisor

Peter J. Denning
Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

In this thesis, we demonstrate the feasibility of a novel multilevel web application that merges
the ability to share sensitive information with cutting-edge Web 2.0 communication paradigms:
we develop a multilevel web aggregation service, allowing web content at various classifications
to be gathered together and browsed. The architecture supports read-down across subscriptions,
supports receiving near-real-time delivery of new low web content to high subjects and demon-
strates several thoughtful, ergonomic user interfaces relevant in a multilevel security context.
The architecture was prototyped and evaluated using the current Monterey Security Architec-
ture (MYSEA) research system.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

List of Acronyms and Abbreviations xiii

1 Introduction and Background 1
1.1 Mandatory Access Control and Multilevel Security 1

1.2 MLS Web Applications . 3

1.3 Web Syndication . 5

1.4 Feed Aggregation . 6

2 Requirements and Design 11
2.1 High-Level Requirements . 11

2.2 Trusted Computing Base . 12

2.3 Concept of Operations . 14

2.4 Design Overview . 15

2.5 MLS Feed Sources. 18

3 MLS News Reader Prototype Implementation 21
3.1 Legacy Aggregators in an MLS Setting 21

3.2 Porting SimplePie . 22

3.3 Project Structure . 23

3.4 Cache and Preferences . 23

3.5 Subscribe-Down . 25

3.6 Input Validation . 25

3.7 User Interface . 26

3.8 Implementation Challenges . 28

3.9 Prototype Testing . 30

vii

4 MLS News Reader Prototype Performance Evaluation 33
4.1 Test Strategy . 33

4.2 Analysis . 34

5 Future Work 41
5.1 State slices supporting complex queries 41

5.2 Text Scraping . 41

5.3 MYSEA Service Integration . 41

5.4 Re-Aggregation . 42

5.5 Performance Enhancements . 42

6 Conclusions 45

A MLS News Reader Functional and Exception Test Plan 47
A.1 References . 47

A.2 Description. 47

A.3 Test Setup . 47

A.4 Abbreviations. 47

A.5 Functional and Exception Testing Coverage 47

A.6 MLS News Reader Functional Test Details 48

A.7 MLS News Reader Exception Test Details 53

B MLS News Reader Performance Tests 57
B.1 Index page tests . 58

B.2 Chronological view tests . 58

C Feeds Used During Performance Testing 59

D Random Image Banner Application Logic 65

List of References 71

Initial Distribution List 77

viii

List of Figures

Figure 1.1 Sample forms used to label in-transit, marked physical data within the
U.S. Department of Defense. 2

Figure 1.2 Icon associated with RSS syndicated content. 5

Figure 1.3 Sample RSS Schema with two items. 6

Figure 2.1 A simplified, notional feed with elements of different sensitivity labels. 13

Figure 2.2 Information flow among components in the MLS News Reader design. 16

Figure 3.1 MLS News Reader directory structure (abbreviated). 24

Figure 3.2 MLS News Reader Preferences Add and Delete Forms. 25

Figure 3.3 The MLS News Reader index page. 27

Figure 3.4 Summary boxes, color-coded by security labels. 28

Figure 3.5 Random image banner, color-coded by security label. 28

Figure 3.6 Default navigation accordion for a SIM_SECRET session. 29

Figure 3.7 Navigation accordions, opened. 29

Figure 4.1 Loading time vs. number of feeds, at a single level. 34

Figure 4.2 Index with images, single level vs. multilevel. 36

Figure 4.3 Loading time vs. number of feeds, reading one and two levels. 37

Figure 4.4 Index with text feeds vs. “good” images. 38

Figure 4.5 Index with “good” images vs. index with “bad” images. 39

Figure 4.6 Throughput (requests per minute) for each test. 40

ix

THIS PAGE INTENTIONALLY LEFT BLANK

x

List of Tables

Table 1.1 A selection of aggregation software: a brief features survey. 9

Table 2.1 Yahoo! Graded Browser Support, as of Jan 2012. 18

Table 4.1 Index page with text feeds at one level. 35

Table 4.2 Chronological view with text feeds at one level. 35

Table 4.3 Index page with image feeds. 35

Table 4.4 Multilevel index page with images. 36

Table 4.5 Multilevel chronological view, no images. 37

Table 4.6 Index page with mixed “good” and “bad” images. 38

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

APC Alternative PHP Cache
BLP Bell and LaPadula
CDS Cross-Domain Solution
CSS Cascading Style Sheets
CMS Content Management System
DAC Discretionary Access Control
DoD Department of Defense
DOM Document Object Model
DTD Document Type Definition
GD Graphics Draw
GIF Graphics Interchange Format
GIG Global Information Grid
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IKE Internet Key Exchange
IMAP Internet Message Access Protocol
JPEG/JPG Joint Photographic Experts Group
LAMP Linux, Apache, MySQL and PHP
LAN Local Area Network
MAC Mandatory Access Control
MILS Multiple Independent Levels of Security
MLS Multilevel Security
MYSEA Monterey Security Architecture
NIPRNet Non-Classified Internet Protocol Router Network
NPS Naval Postgraduate School
NRL Naval Research Laboratory
OS Operating System
PHP PHP Hypertext Processor
PNG Portable Network Graphics
PRISM Program Replication and Integration for Seamless MILS
RDBMS Relational Database Management System
RSS Really Simple Syndication or RDF Site Summary

xiii

SIPRNet Secret Internet Protocol Router Network
STOP Secure Trusted Operating System
TCB Trusted Computing Base
TPE Trusted Path Execution
TSE Trusted Services Engine
UI User Interface
URL Uniform Resource Locator
USG United States Government
WebDAV Web Distributed Authoring and Versioning
WWW World Wide Web
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol
XSLT Extensible Stylesheet Language
YUI Yahoo! User Interface Library

xiv

Acknowledgements

This material is based on work supported by the National Science Foundation under Grant
DUE–SFS Scholarships.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

CHAPTER 1:
Introduction and Background

Recently, current National Intelligence Director James Clapper, during his keynote address at
the Center for Strategic & International Studies in Washington, D.C., remarked on the simulta-
neous urgency and care that must be considered in the context of information sharing:

“Information sharing has been a huge mandate for us all since 9/11. The notion
of sharing is an interesting concept; it can be phenomenal, it can be dangerous.
It depends on what is shared and with whom it’s shared...Sharing must be done
responsibly, seamlessly, and securely [1].”

Clapper’s statements resonate particularly well with the motivation and long-range vision of the
Department of Defense’s Global Information Grid [2]. Multilevel secure systems attempt to fa-
cilitate this kind of controlled, information sharing. In this thesis, we demonstrate the feasibility
of a novel multilevel web application that merges the ability to share sensitive information with
cutting-edge Web 2.0 communication paradigms: we develop a multilevel web aggregation ser-
vice, allowing web content at various classifications to be gathered together and browsed. The
architecture supports read-down across subscriptions, supports receiving near-real-time deliv-
ery of new low web content to high subjects and demonstrates several thoughtful, ergonomic
user interfaces relevant in a multilevel security context. The architecture was prototyped and
evaluated using the current Monterey Security Architecture (MYSEA) research system.

We begin by discussing the development of multilevel security.

1.1 Mandatory Access Control and Multilevel Security
With the Second World War began the widespread practice of marking the sensitivity of pieces
of information with classification labels [3, p.140]. Labels were based on the severity of the
consequences that may result if that data fell into the wrong hands. This general data labeling
strategy is still in wide use today within the DoD (see Figure 1.1).

1

Figure 1.1: Sample forms used to label in-transit, marked physical data within the U.S. Department
of Defense.

1.1.1 Mandatory Access Control and Information flow policy

A system protecting labeled data gives a subject access to an object based on an access control
policy. Unlike access control systems where policies are controlled by the user (i.e., discre-
tionary access control [DAC] systems), in a system with data labeled according to sensitivity,
access must be enforced according to a global policy on information flow. For example, a sub-
ject with Secret clearance may access data labeled Secret and Confidential, but not data labeled
Top Secret. These labels are maintained by the system: changing the label or copying Top Secret

data into a Secret container must be prevented by the system at all times. This concept forms
the basis of a mandatory access control (MAC) policy.

The set of sensitivity labels to which mandatory information flow policies apply form the points
of a lattice [4]. The structure of the lattice defines a dominance relationship between labels:
Li dominates L j when a subject with Li-clearance can read data with label L j; we denote
this dominance relationship by L j ≤Li. There may be points on the lattice that are incompa-
rable (i.e., it is not the case that A ≤B or B ≤ A), which corresponds to the typical use of
sensitive, compartmentalized classifications. Bell and LaPadula formalized a model describing
data confidentiality and information flow in this context, called the Bell-LaPadula (BLP) policy
model [5]. The BLP policy is a MAC policy comprised of two rules: (i) the simple security
property, where a subject may not read information at a level higher than her clearance, and (ii)
the confinement property, where a subject may not write to levels dominated by her clearance.

2

1.1.2 Multilevel Secure Systems
A multilevel secure (MLS) system can manage arbitrarily labeled information in accordance
with a mandatory security policy, such as the BLP policy. The system must perform access
checks and only grant access to authorized users. MLS systems are designed to withstand
exploit by untrustworthy computer programs, i.e., Trojan Horses, which may attempt to copy
sensitive information from higher to lower levels. There are several tradeoffs to consider when
designing a system architecture capable of supporting an MLS policy [6]. We briefly discuss
some of these issues.

Replication-based architectures utilize standalone, single-level components strictly separated by
security level. The Multiple Independent Levels of Security (MILS) architecture is an example
of such a design, which implements separation by level using a separation kernel [7]. This strict
isolation may make a MILS system easier to formally evaluate compared to other systems, but
may also result in expenses and inefficiencies, e.g., related to duplication and maintenance.
Strict separation by level certainly prevents information flows that may disobey MAC policy,
but also prevents others that are allowed under a BLP policy.

In replication architectures, transferring data from one single-level domain to another typically
requires a policy-enforcing (i.e., trusted) mechanism, called a Cross-Domain Solution (CDS).
Examples of CDS products include guards and data diodes. The Naval Research Laboratory
(NRL) Network Pump [8] allows messages from a low sensitivity level to be sent to a higher
sensitivity level, and prohibits information flow in the reverse direction. The difficulty in build-
ing and evaluating these types of systems is in limiting the data exchanged to only permitted
flows [9].

Our focus in this work is on MLS systems capable of supporting an arbitrary MAC policy, and
not simply a separation policy. Hinke proposes a system architecture where a high-assurance
server is the locus of policy enforcement, through which single-level clients access resources in
accordance with policy [10]. We are particularly interested in systems that are efficient in the
presence of huge policy lattices, i.e., the so-called gazillions problem [11]. Next, we explore
applying MLS concepts to web services.

1.2 MLS Web Applications
Since its development, the Internet and the World Wide Web (WWW) have been in a near-
constant state of evolution. The Web has evolved into a vast information-sharing system that

3

is less about static, linked Hypertext Markup Language (HTML) content and more about ser-
vices for dynamic and collaborative sharing. The most recent set of dynamic web technologies
and new modalities of user interaction with the WWW are collectively referred to as Web 2.0.
Web 2.0, in part, includes new ways users interact with information, publish information and
consume information. This includes recent web publishing technologies, such as wikis, blogs,
social networks, and e-commerce.

It is natural to consider the role of web services in a multilevel environment, before considering
web syndication in that context. Indeed, several architectures have been proposed for deliver-
ing content of different classifications to remote end-users using HTTP-based protocols. This
includes replication-based architectures (i.e., offering single-level web services at a few levels)
and architectures offering web services on-demand, at any level.

In replication-based architectures, MLS web services are implemented by an HTTP-based
front-end to a trusted, content distribution service, whose role is to combine and replicate data
from each domain. For example, Galois’ Trusted Services Engine (TSE) implements a high-
assurance Web Distributed Authoring and Versioning (WebDAV) server that supports automated
content merging and replication across domains. The system supports a multi-level wiki (ML
Wiki), backed by the TSE, which provides merged views of wiki pages to users, according to a
BLP policy. Relatedly, the Program Replication and Integration for Seamless MILS (PRISM)
engine also implements a CDS service for filtering and merging single-level content into a mul-
tilevel view [12]. PRISM supports a multilevel wiki, leveraging a special remote file system
(mlsfs) that, again, replicates and merges data across levels.

Generically, cross-domain guards may be used to connect single-level networks, delivering (ei-
ther explicitly or implicitly) labeled content from one domain to another [13–15]. Commercial
Extensible Markup Language (XML) guards have been developed to automatically declassify
or filter messages from high networks to low networks, such as Lockheed Martin’s Radiant
Mercury guard and BAE’s DataSyncGuard. Guards like these act as the locus of enforcement
in some architectures, providing web services between networks of different classifications.

Web services running as unprivileged subjects in a multilevel environment—one in which they
are allowed access to some data and not others, based on MAC policy—can be designed (or
re-factored) to be multi-level aware (MLS-aware), to function appropriately when restricted to
read-only access to some of their resources. In MLS-aware software, system resources are la-
beled and their access mediated by a Trusted Computing Base (TCB). The web server software

4

Figure 1.2: Icon associated with RSS syndicated content.

itself performs no MAC enforcement, but is constrained by policy. When the TCB is an operat-
ing system, the granularity of labeling is typically at the file level. MLS-aware web servers [16]
and wiki services [17] have been developed in this general framework. Functionally, we view
MLS-aware web services as a least-privilege simulation of a trusted MLS web service; archi-
tecturally, however, the distinction between MLS-aware web services and MLS web services
is significant (e.g., smaller TCB, no possibility of downgrading/leaking, no responsibility for
filtering). We will often refer to MLS-aware services as MLS services, eliding these (important)
architectural details. Next, we hone in on the specific web technology upon which the rest of
our work focuses: the syndication of web content.

1.3 Web Syndication
Web syndication technologies, such as RSS and Atom, are a powerful method of distributing
and consuming new web content. RSS most commonly stands for “really simple syndication”
and is a standard that defines a structured document that describes metadata for published con-
tent. RSS is currently in version 2.0, though previous versions are still widespread. An RSS
feed is an XML document, typically with file extension .xml or .rss.

For better or worse, there is a great deal of flexibility as to what an RSS file may contain. The
only required content is the address of the website to which the RSS feed pertains, the feed title
and description. These required elements are found within the <channel> tag of the XML
file. Optional, though commonly used, the <channel> tag includes <item> tags. Each item
must contain at least a title, description, and link (see Figure 1.3).

Images are a significant factor in the design of websites and may, themselves, provide valuable
information. Surprisingly, RSS provides no dedicated “image” field to allow for embedded
images. Various attempts have been made to remedy this problem: Yahoo! developed the
Yahoo! Media RSS module [18], and RSS v2.0 introduced the “enclosure” field. Neither,
however, allow the web publisher to embed anything other than thumbnail images in the actual
feed. Common practice is to embed HTML into the RSS file directly. This process serializes
HTML in a form that will be locally re-interpreted as HTML, rather than part of the RSS XML

5

Figure 1.3: Sample RSS Schema with two items.

structure. Thus, becomes

There are many other elements that can be included in RSS feeds: audio (i.e., podcasts), geo-
graphic data, data “categories” and many others. A general lack of consistency, however, in the
use of these fields greatly complicates the creation of software that aggregates and presents the
data. If, for example, only a small fraction of feeds have a “category” tag, most feeds would end
up labeled “Uncategorized.” Thus, the utility of new data fields hinges greatly on community
adoption and use, and lack of required elements weakens the capabilities of feed aggregators to
consume and organize data.

In contrast to RSS, the Atom syndication format has more required fields and better use of
timestamps. As a late entry, however, Atom missed out on critical branding opportunities.
Today, both formats are used, though RSS dominates [19, p.131]. In general, syndication tends
to be colloquially referred to as RSS, regardless of whether the Atom or RSS standard is utilized.

1.4 Feed Aggregation
Informally, a feed aggregator (or aggregator) is software that periodically polls for feeds de-
scribing new syndicated content from a variety of sources. Aggregation software has gained

6

popularity, following the rise of blogging and new forms of web publishing. For frequently
changing content (e.g., daily news websites), aggregators provide a single point of entry for a
user to access and manage large volumes of web content. For infrequently published content
(e.g., low-volume blogs), aggregators automate the repetitive tasks associated with polling for
new content, allowing users to follow a large number of sources with little overhead. There
are many types of software designed to consume syndicated content, reflecting the multitude of
ways data is read, explored, and used on the Web. Next, we characterize some trends based on
a survey of syndication-related projects (see Table 1.1 for a summary of those projects).

1.4.1 Personal Desktop Aggregators
We characterize a desktop aggregator as any software that resides on a client and aggregates
feeds from various sources for a user. Some software extends or interoperates with popu-
lar e-mail programs, web browsers, and operating systems. Many popular e-mail clients and
web browsers already incorporate the ability to fetch and present syndicated content. Other
aggregators are standalone, dedicated applications, like BlogBridge [20], RSSOwl [21], Am-
phetaDesk [22], and AgileRSS [23]. These allow the user to navigate content using a graphical
interface, keep state on behalf of the user (marking items as read or unread), and allow the user
to organize, search, filter, and tag feed items. Some software presents feed items in the form of
a news ticker, showing summaries of syndicated content as feed updates are detected.

1.4.2 Podcatchers and other Media Desktop Aggregators
Since RSS 2.0 and Atom 1.0, these syndication formats support descriptions for external media
(e.g., MP3 audio, MP4 video, BitTorrent files). This is an enabling technology for a variety of
new publishing trends, like podcasting, vlogging, and photoblogging. Due to the typical size of
the syndicated media (on the order of megabytes), these aggregators are client-side applications
designed to download new content slowly, in the background. Additionally, these applications
typically integrate support for handling the target media. For example, podcatchers—software
for managing feeds associated with syndicated audio content, or podcasts—typically include
support for playing the audio. Broadcatching—a term used to describe the wide distribution
of syndicated media, like Internet television—is sometimes achieved by advertising files using
RSS and distributing the files using the peer-to-peer BitTorrent protocol; thus, some BitTorrent
clients include support for retrieving RSS feeds and interpreting enclosures that contain torrent
descriptions.

7

1.4.3 Server-Side Personal Aggregators
Given the proliferation of web-enabled devices, it’s natural to consider migrating the personal
aggregator concept from the desktop into the cloud. Most of these are server-resident appli-
cations accessed using a web browser, allowing a user to aggregate syndicated content, or-
ganize and tag feeds, and mark feed items as read or unread. Others—like rss2mail [24],
Newspipe [25], and feed2imap [26]—are administered via a web interface, collect syndicated
content, and then distribute it via e-mail. Server-side aggregators often utilize schedulable logic
(e.g., cron jobs) to update and cache feeds, separating content retrieval from presentation. Ag-
gregators that do not fetch and cache content in advance of presentation typically suffer per-
formance penalties: when feeds are fetched in real-time, the least responsive feed source will
necessarily act as a bottleneck.

1.4.4 Community Aggregators / Single Page Aggregators
Some server-side web applications aggregate content and present it to visitors, eschewing the
complexities associated with managing per-user state (marking items read or unread) or man-
aging a set of unique feeds for each user. Extensions or plugins to popular CMS software and
online forum software, for example, add value to these applications by enabling a set of feeds
to be displayed for all visitors. Some software is deployed as a standalone website which ag-
gregates feeds, with the intention of adding value to those sources (like item ratings, comments,
or customizable interfaces); PopUrls [27], a site which displays a collection of the web’s most
visited social news sites, is a prominent example. Other websites collect feeds targeted towards
some special interest community; for example, Planet Mozilla [28] collects feeds associated
with Mozilla community news and Mozilla developer blogs.

1.4.5 Re-Aggregators
Some server-side software not only aggregates feeds, but also re-publishes the aggregated items
as a new feed. These have been described as RSS re-aggregators or RSS-mashups, because
they take data from multiple sources and present a new, composed service. Examples of
these services include FeedWeaver [29], xFruits [30], BlogSieve [31], FeedRinse [32], and
Yahoo! Pipes [33]. Some services support advanced filtering, search, notification, and other
user-definable process logic during feed generation.

In our next chapter, we explore necessary components of a multilevel web content aggrega-
tor.

8

Project R
ef

er
en

ce

B
as

ic
C

ha
ra

ct
er

iz
at

io
n

O
pe

n-
So

ur
ce

Li
ce

ns
e

Dependencies M
ul

tip
le

U
se

rs

O
rg

an
iz

e
/t

ag
fe

ed
s

O
P

M
L

Su
pp

or
t

M
ar

k
ite

m
s

as
“r

ea
d”

G
en

er
at

e
ne

w
fe

ed
s

Sc
he

du
la

bl
e

ca
ch

in
g

Bloglines [34] Section 1.4.3 – X X X X
Google Reader [35] Section 1.4.3 – X X X X X
FeedShow [36] Section 1.4.3 – X X X X
feed on feeds [37] Section 1.4.3 GPL PHP 4.3.2+,MySQL – X X /
Tiny Tiny RSS [38] Section 1.4.3 GPL PHP 5+,MySQL/Postgres – X X X X –
zFeeder [39] Section 1.4.3 GPL PHP 4.2+ – X X – /
lylina [40] Section 1.4.3 GPL PHP 5.2+,MySQL X X X – /
Rnews [41] Section 1.4.3 GPL PHP 4.3+,MySQL X X X X /
Urchin [42] Section 1.4.5 various Perl, CPAN, MySQL – X – X
Lilina [43] Section 1.4.4 GPL PHP 5.2+ – X – X /
Moonmoon [44] Section 1.4.4 BSD PHP 5+ – X – X –
My News Crawler [45] Section 1.4.4 – PHP, MySQL – X – X –
PHP RSS Reader [46] Section 1.4.4 – PHP, MySQL – X – X –
PlanetPlanet [47] Section 1.4.4 PSF Python 2.2+, Berkeley DB – – – X –
rawdog [48] GPL Python 2.4+ – X X – – X
curn [49] BSD Java, JAF, Jakarta BSF – – – X
gPodder [50] Section 1.4.2 GPL – X X X – /
BlogBridge [20] Section 1.4.1 GPL – X X X – /
RSSOwl [21] Section 1.4.1 EPL – X X X – /

Table 1.1: A selection of aggregation software: a brief features survey.
In the matrix above: (X) supported feature; (/) partial support, (-) no
support or not applicable; (BSD) a BSD-like license; (EPL) Eclipse Public
License; (GPL) GNU Public License; (PSF) Python Software Foundation
License; blank entries are unknowns.

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

CHAPTER 2:
Requirements and Design

“A frog in a well cannot conceive of the ocean.”

–Zhuangzi [51]

We introduce our method of MLS Aggregation in a multilevel environment. In particular, our
aggregator is a server-resident news application (Section 1.4.3) capable of handling and deliv-
ering syndicated content from sources of different classifications. We call this the MLS News
Reader application. While an aggregator with this functionality can be attained in a variety
of multilevel architectures, we target the Monterey Security Architecture (MYSEA) research
platform for prototype development and experimentation, as it meets many of our system re-
quirements. Next, we describe our system requirements, our target architecture, and the concept
of operations for an MLS News Reader.

2.1 High-Level Requirements
The following are requirements for our MLS News Reader application, following from popular
secure design principles and from our target architecture:

1. Minimize the introduction of privileged components.
In particular, a “trusted aggregator” is undesirable. Software should defer to the MAC
and DAC enforcement provided by the TCB.

2. Minimize the introduction of new security-relevant components.
Software should defer to the authentication and single sign-on mechanisms provided by
the TCB.

3. Software should not require any persistent client-state be maintained.
A server-resident web application should support stateless clients.

4. Software cost should be minimal.
Cost of ownership should not be prohibitive.

5. Interfaces should be intuitive and user friendly.
System behavior should be consistent with user expectations and principles of ergonomic
security should be obeyed.

11

6. Software should scale gracefully, to function with complex policies on the order of hun-

dreds of security levels.
On the one hand, this may be viewed as an extreme requirement that serves merely to
distinguish true MLS designs from weaker, multiple single-level designs. On the other
hand, it motivates designs capable of addressing the gazillions problem, which is endemic
to those multiuser MLS systems in which security compartments are commonplace.

2.2 Trusted Computing Base
We have selected the Monterey Security Architecture (MYSEA) design as our Trusted Com-
puting Base (TCB). MYSEA allows users to take advantage of policy-constrained application
services from thin-client workstations [52, 53]. Policy-constrained, or MLS-aware, means that
an application has been modified to run in a multilevel environment without requiring extraor-
dinary privileges, so it is both fully functional and constrained by the security policy. Thus, as
stated in our requirements, we need not create a “trusted aggregator.” This allows us to re-use
and modify low cost, open source software to build untrusted applications that run at arbitrary
security levels.

Our requirements, along with our choice of MYSEA, play a pivotal role in how we handle
feeds. In particular, our first requirement limits the introduction of new trusted subjects, like
XML guards, trusted XML query engines, and trusted web services. As we see below, this
limits the granularity at which the system can label feed data.

2.2.1 Feed as a Collection of Labeled Objects
Highly granular access control policies for XML documents have been proposed [54–61], typ-
ically in the context of interpreting the XML document as a database and the XML query-
execution engine as the locus of policy enforcement. Previous work has considered several
variants of policy and labeling rules: labeling at the granularity of the XML element; labeling
the XML schema or DTD; how to handle unlabeled items; policy inference for partially la-
beled documents (e.g., top-down label propagation, bottom-up label propagation, most-specific-
takes-precedence propagation); how to resolve conflicting policies or inconsistently labeled
documents; etc. The following questions must be strategically considered: Should a document
containing unauthorized information (with respect to a user’s clearance) be filtered, or should
access to the entire logical document be denied? How can one filter or suppress those unautho-
rized elements that are required, per the schema? These are issues that affect DAC and MAC
policies equally, and we do not summarize strategies that have been proposed to handle them

12

<?xml version="1.0" encoding="UTF-8" ?>
<rss version="2.0">
<channel>

<title>Bobs International Law Blog</title>
<description>International Surveillance</description>
<link>http://mlsserver.org/~bob/law/blog/</link>
...
<item>

<title>Re: Recent Ruling in Hague Case</title>
<summary>Hon. Muellers final ruling</summary>
<link>http://mlsserver.org/~bob/law/blog/03/08/131502.html</link>
...
<securitylabel><label>SECRET</label></securitylabel>

</item>
<item>

<title>Excellent Banana Bread Recipe</title>
<summary>The first secret is caramelized walnuts...</summary>
<link>http://mlsserver.org/~bob/law/blog/03/03/203045.html</link>
...
<securitylabel><label>UNCLASSIFIED</label></securitylabel>

</item>
</channel>
</rss>

Figure 2.1: A simplified, notional feed with elements of different sensitivity labels.

here. In general, regardless of the specific XML labeling strategy being utilized, these schemes
each allow the XML document to be traversed as a tree of nodes (i.e., DOM nodes) and, if the
scheme is unambiguous, one can determine the security label of each node.

General proposals have been made to bind security labels to XML elements [62], as have pro-
posals for extensions to specific XML standards. Specifically, Extensible Messaging and Pro-
tocol (XMPP) extensions supporting security labels [63] and Publish-Subscribe delivery [64]
allow XMPP to be used as a transport for labeled RSS and Atom feeds. Figure 2.1 shows a
notional example of an RSS feed with items that are associated with different security labels.

2.2.2 Feed as a Single Labeled Object
Instead of labeling objects within a feed document, we may treat each RSS or Atom feed doc-
ument as a single labeled object. In this model, labels within the feed are unnecessary. Instead,
the entire feed carries an effective label, matching that of the (untrusted) subject who wrote the
content. This model allows untrusted subjects to generate feed content, and obviates the need
for a trusted XML labeling service.

13

This model facilitates an architecture in which general-purpose trusted subjects, like a high-
assurance operating system, manage the feeds. It then becomes possible to design an MLS
RSS/Atom Aggregator following the Hinke-Schaefer (a.k.a kernelized) MLS RDBMS archi-
tectures [65], wherein (untrusted) application services get access to resources that are labeled
and managed by a high-assurance kernel.

Given that we do not want a trusted XML labeling service, it follows directly that our prototype
will not support XML structures with heterogeneous node labels (as in Section 2.2.1). Instead,
data is labeled at the granularity supported by the underlying TCB, i.e., MYSEA. The MYSEA
system itself inherits object labels from an underlying, high-assurance operating system, in this
case BAE’s Secure Trusted Operating System (STOP). Thus, RSS/Atom feeds will be labeled
at the file granularity.

2.3 Concept of Operations
In order to validate a user’s credentials, MYSEA uses a Trusted Path Extension (TPE) device.
When a user logs in, the TPE passes the user’s credentials to the MYSEA Server. The server
validates the login attempt and instructs the TPE whether to allow or deny access to the network.
In negotiating a session level, the TPE passes the user’s request to the server for a decision.
After a successful login and session level negotiation, the TPE allows the user to access the
MLS LAN, the MYSEA Server and its services. To meet object reuse requirements [66], client
state is purged at the end of each session, and data created or modified on the clients is stored
on the MYSEA Server.

After a user establishes a session at a level, she is able to access the MLS News Reader web
application using a web browser from her thin client. This is a server-side, personal news reader
(aggregator), which presents a way to navigate the contents of RSS/Atom feeds for any level her
session dominates, i.e., from any of the single-level sources and MLS-aware services. The user
will be able to add or delete feeds associated with her current level. The service will be able to
read-down and access subscriptions made at lower levels, during previous sessions. The user
will be able to browse all of her subscriptions (by level, by feed, chronologically, etc.) and the
data associated with those feeds. Thus, a user at Secret will be able to view items in both Secret

and Unclassified feeds, e.g., using the same web interface to read syndicated Unclassified CNN
news content and syndicated Secret blog content, simultaneously.

14

Despite the fact that data are labeled at the granularity of the feed, our read-down requirements
will cause data from different levels to be intermixed. For example, chronological browsing
may cause an item from a wiki’s Secret Atom feed to appear between two items from a blog’s
Unclassified RSS feed. It follows that the MLS News Reader application must unambiguously
mark the data it displays (with advisory labels) using the label of the source (feed), i.e., delin-
eating where the Secret data begins and ends.

Next, we describe the design of our MLS News Reader application, based on these preliminary
high-level and functional requirements.

2.4 Design Overview
The MLS News Reader application design leverages an existing MLS web service. On MYSEA,
MLS web services are implemented by spawning, on demand, an unprivileged Apache process
at the level of the requestor’s user session, to service the end-user’s requests. The MLS News
Reader will read-down to access a set of single-level state slices. Each slice is a labeled object
managed by MYSEA, holding state used by the application. In particular, the slice holds a list
of the user’s subscriptions. This state may be implemented in a variety of ways: it could be a
structured file like XML, or a flat-file database such as those utilized by SQLite. It could hold
arbitrary feed or reader state, including alternative feed titles, feed groupings and read/unread
per-item state.

For each subscription read from a slice, the MLS News Reader retrieves feed items from a
public, shared, per-level feed cache maintained by MYSEA. This cache holds all recent feed
items and some embedded feed content (e.g., images, favicons). As previously remarked, feed
caches are used in several aggregator designs, as they allow items to be efficiently retrieved
without suffering performance penalties associated with unresponsive, or intermittently failed,
remote content producers.

For any feed in a slice at the subject’s session level—i.e., the slice that is both readable and
writable—if the cached feed is expired then the cache will be updated. For example, a Secret

subject has the ability to update the Secret cache, since all feeds in the Secret slice are interpreted
as feeds that are either (i) from sources on the Secret-level backend network, i.e., the SIPRNet,
or (ii) from Secret subjects in the MLS LAN. Subjects at Secret will only be able to subscribe
to feeds of this kind, since they cannot write requests to subjects at lower levels.

15

Figure 2.2: Information flow among components in the MLS News Reader design.

In addition, at each level, a scheduled, unprivileged job will periodically poll all slices at its level
and update the cache with new feeds. For example, an Unclassified cache updater job will read
all the Unclassified slices and attempt to update the item and image Unclassified cache based
on these subscriptions. Likely, this unprivileged job may require some DAC exception, to read
slices owned by arbitrary users; alternatively, slices can be written with appropriate permissions
for this cache update daemon, e.g., readable by a news-update group.

Starting an unprivileged process in the absence of a MYSEA user session is, however, not cur-
rently supported. We envision a new trusted cron service that would be able to spawn untrusted
processes at any level, at (deterministic, scheduled) intervals. Such a service would allow a
Secret user to enjoy a channel-free mechanism to see “fresh” content in the Unclassified cache,
while remaining logged in at Secret.

The MLS News Reader design is summarized in Figure 2.2, which highlights information flow
between the main trusted (italicized) and untrusted components. Our prototype implementation

16

of this design leverages MYSEA. We remark that our prototype implementation deviates from
our architectural design in a few notable ways: (i) some of the design remains unimplemented
(components with hollow borders are planned but not yet prototyped) and (ii) some information
flows have changed. In particular, in our implementation, the socket proxies mediate access
between the untrusted subject and all network interfaces, even those at the subject’s level. We
refer the reader to other sources for an account of MYSEA’s design and implementation [52,53].

2.4.1 Interface Requirements
One of the most significant challenges of any feed aggregator is the presentation of feed data:
how does one present the user with a potentially massive amount of information, on the order
of thousands of feeds, each with a variable number of items and a diverse set of metadata? We
describe some of the user interface design targets for our prototype MLS News Reader.

Advisory Labels
The MLS News Reader navigation must be able to handle an arbitrary number of security levels
and feeds. Each feed must be clearly labeled with its security label. Artifacts from each feed,
such as story items and images, must also be identified by an appropriate label. The navigation
should be organized such that the user knows under which security level the feed is contained.
In our design, the user should have multiple ways of viewing feed data.

Per-Level View
The MLS News Reader should provide the user with a variety of methods for sorting data. In
particular, the user should be able to view the most recent items from all feeds at her current
session level, or at any level her session dominates.

Chronological View
Like many other aggregators, our MLS News Reader should allow users to browse feed items
chronologically. Items from a user’s subscriptions (i.e., from feeds at different classifications)
should be merged into a unified, multilevel view across time.

Snapshot View
While a chronological view may be natural, it can hide potentially interesting content. High-
volume publishers can effectively “bury headlines” when a user is provided only a strict chrono-
logical view of her data. For example, the microblogging service Twitter provides users with
a mostly-chronological view of data; the service quickly found “headline burying” to be a

17

problem, eventually attempting to ban high-volume and manipulative re-tweeting as a type of
spam [67].

Our MLS News Reader interface should provide the user with a snapshot view of recent activity
from among her subscriptions. We intend to limit content shown from each feed in this snapshot,
to reduce the problem of “headline burying.”

Subscriptions
The MLS News Reader interface should allow the user to add and remove subscriptions to
feeds. Given the somewhat technical nature of exact feed URLs, the application should be able
to reasonably auto-discover feeds. For example, the user should be able to enter cnn.com as
opposed to http://rss.cnn.com/rss/cnn_topstories.rss.

Compatibility
As with any modern web application, intentionally designing the service for cross browser com-
patibility is a necessity. If a user accesses the application from, say, an older version of Internet
Explorer, the application should behave similarly to contemporary browsers. Specifically, our
application will target compatibility with the set of browsers in Yahoo!’s “Graded Browser Sup-
port.” This set of browsers is detailed in Table 2.1.

Browser Version

Internet Explorer 6.0, 7.0, 8.0, 9.0
Firefox 3.*, 4.*, 5.*
Chrome* Latest stable
Safari 5.*, iOS3.*, iOS 4.*
Webkit Android 2.*

Table 2.1: Yahoo! Graded Browser Support, as of Jan 2012.
* denotes the most-current non-beta version.

2.5 MLS Feed Sources
To close this chapter, we briefly describe our multilevel feed content, all of which the MLS
News Reader should be able to handle. The sources of syndicated web content available on
the MYSEA system fall into two categories: (i) sources originating from a single-level network

18

connected to MYSEA, e.g., the Internet and SIPRnet; and (ii) MLS-aware services on MY-
SEA. The current prototype MYSEA system supports several MLS-aware services that produce
syndicated content:

MLS Blogs. Feeds that syndicate recent posts for any user’s MLS blog. Currently, the MLS
blog software generates feeds in a very flexible manner: it has the ability to publish feeds
containing posts at or below the requestor’s session level, a subset of those posts about a
particular topic, matching a particular search term, etc. The items in these (on-demand
generated) feeds are marked with the label of the source documents used during feed
generation1.

MLS Wikis. Feeds that syndicate recent activity for a “web” in the MLS wiki. The organiza-
tion of the wiki into distinct “webs,” each of which is associated with a level, is part of
the current wiki software’s intended design.

MLS Microblog. Feeds that syndicate all recent activity at a particular level in the MLS mi-
croblogging application.

1Note: in this example, an untrusted subject is labeling RSS data at the item-granularity. Since the blog
application is an untrusted subject, these markings cannot be trusted: as discussed in Section 2.2.1, only a trusted
subject can be relied upon to label data at this granularity. Thus, no matter how its contents have been marked, if a
Secret subject generates a feed, then it is treated as a Secret feed (following Section 2.2.2).

19

THIS PAGE INTENTIONALLY LEFT BLANK

20

CHAPTER 3:
MLS News Reader Prototype Implementation

“Do. Or do not. There is no try.”

– Jedi Master Yoda [68, p.187]

We describe our decisions and experiences in prototyping the MLS News Reader application
on the current MYSEA system. As previously remarked, the MYSEA system re-uses a high-
assurance operating system, currently BAE’s STOP OS. We re-use many existing MLS-aware
services and support libraries on MYSEA, including Apache and PHP. We begin by explaining
our choice of porting an existing feed aggregator.

3.1 Legacy Aggregators in an MLS Setting
For a multilevel environment, reusing existing aggregation software has many benefits. It pro-
vides to users in a multilevel context the same features and interfaces they have come to expect,
elsewhere. Information flow policy enforcement can be assured by running software without
privilege, i.e., as untrusted subjects. When technology changes, as new features become avail-
able and new versions of software are released, upgrades can be integrated into the system
without its re-certification or re-evaluation. Further, writing aggregation software specifically
for an MLS environment, from scratch, would be a costly and non-trivial task. Useful aggre-
gators must be able to discover, parse, sanitize, cache and fix feeds from a variety of sources.
Thus, the software must be capable of parsing all popular feed formats, both their current and
past versions. Further, it should parse these feeds forgivingly, as feed standards are sometimes
not followed faithfully by web publishers.

Sadly, there are relatively few open source, server-side, personal news aggregator projects (see
Table 1.1 on page 9). Of those available, most have small user-bases, cannot serve multiple
users, i.e., fail to meet our concept of operations, or are commercial services hosted on the Inter-
net (and cannot be privately deployed in a multilevel network or between single-level classified
networks). The remaining candidate software cannot be used in MYSEA due to lack of sup-
port for some software dependency. For example, the current MYSEA prototype does not fully
support Python or JAVA. A further example is MYSEA’s current relational database support,
which follows a variant of the “distributed, partitioned” MLS Relational Database Management

21

System (RDBMS) Woods-Hole Architecture [69]. In that architecture, a trusted subject medi-
ates all access to a set of single-level databases, which are isolated from subjects. In MYSEA,
databases are isolated outside the MLS LAN on single-level networks, and access is through a
trusted database proxy. The proxy does not replicate data from low to high, nor does it simu-
late a single, trusted MLS RDBMS. Thus, re-using an aggregator that requires PostgreSQL or
MySQL database support (i) would require extensive aggregator modification, since it will need
to explicitly request access to each single-level database via a proxy, and (ii) would be limited
to handling only those data for which there is a corresponding single-level network interface.

Adapting an aggregator to use MYSEA’s current MLS RDBMS would cause us to lose most of
the benefits associated with software reuse: heavy modifications to the software would preclude
rapidly integrating improvements to the software from other sectors. Further, we would lose
scalability, because we could only support as many levels as we have single-level networks.
Given that MYSEA hosts services producing feeds at arbitrary levels, we decided that MYSEA’s
current “LAMP stack” was unable to support any surveyed project (in a manner that could
satisfy our requirements).

These factors led to our decision to design and develop a new web application for our MLS
News Reader service. In our prototype implementation, the PHP library SimplePie [70] pro-
vides the logic for retrieving, parsing, and caching feeds. SimplePie was selected as (i) it was
used by many of the projects we surveyed, (ii) it appeared to have fair community support and
documentation, and (iii) was relatively straightforward to port to MYSEA. Thus, our proto-
type implementation does attempt to re-use, when possible, existing libraries and software. The
MLS News Reader’s design, however, does not make use of “legacy aggregators” in a black-box
manner.

3.2 Porting SimplePie
To verify that SimplePie could be used to support our design, two types of preliminary testing
were done: (i) verifying SimplePie would work on STOP OS, by installing and running its
compatibility and unit tests, (ii) verifying that SimplePie caching worked in read-only mode,
even from levels with no network access. We validated the latter feature by running a sample
application using SimplePie on Linux, filling the feed cache, modifying the cache to be read-
only, disconnecting the network, and trying to access those feeds. Both tests were successful.

22

It has been the case in the past that limiting an application to read-only access (when it was
developed with the anticipation of having full read-write access), sometimes leads to a variety
of hard failures or other anomalies. Indeed, errors are displayed when the SimplePie library
attempts to update a cache when it lacks permissions. In our prototype, using permissions
introspection, the application assesses if it has sufficient permissions to update a cache. When it
lacks these permissions, it voluntarily sets its “access mode” to have a very long cache timeout,
so it does not attempt to update the cache. This is, of course, merely to avoid logging errors and
not for policy enforcement. Similar logic is used to detect when image and favicon cache-misses
should be ignored, or corrected.

3.3 Project Structure
The key components of our MLS News Reader application include the SimplePie library, the
application logic, support libraries, style files and cache (see Figure 3.1). The single-level state
slices are stored under each user’s home directory.

The SimplePie library is wholly contained within the simplepie.inc file. Our main file,
index.php, uses PHP’s include function to access logic to construct various “views” for
the user-interface: preferences view (in-prefs.php), chronological view (in-chrono.php),
chronological view within a level (in-chrono_level.php) and single feed view (in-list.php).

3.4 Cache and Preferences
There is a single cache per level, shared amongst all users. Thus, the cache can be updated by
any MYSEA user at the appropriate level. As in Figure 3.1, the location of each feed cache is:

[document root]/news/cache/[security level]

The idea of implementing separate caches for each user was rejected as inefficient, despite it be-
ing arguably favorable from a DAC perspective. For example, the MLS wiki engine in MYSEA
produces automatic feeds for all pages, including those with wiki access controls. The design
of MYSEA causes the MLS News Reader to run with the identity of the remote user and the
wiki automatically authorizes requests to restricted pages based on this identity. This opens the
possibility of the MLS News Reader accessing private feeds, and storing this data in the public
cache. Of course, DAC always provides the ability to release private data to a public venue. A
future enhancement might include a “private” toggle during subscription, to provide the user
with the option of using a private cache or disable caching altogether, on a feed-by-feed basis.

23

Figure 3.1: MLS News Reader directory structure (abbreviated).

3.4.1 User State Slices

Since the MLS News Reader is, for each user request, launched with the identity of the remote
user, the process has access to all files and directories accessible to that user. To prevent one user
from accessing the state of another user, the application stores user state in a private location,
under her home directory:

/home/[username]/[security level]/.rss/config/default

When a user accesses the preference view (see Figure 3.2), she is given the option of adding or
removing feeds from the state slice associated with her current session level. After submitting
this form, the application verifies the remote feed as accessible, creates an entry for the feed,
and serializes this entry as state. The user is also presented with a list of those subscriptions
that she may choose to delete. In Section 3.5, we discuss the motivations related to limiting
subscription to those feeds accessible at the user’s session level.

24

Figure 3.2: MLS News Reader Preferences Add and Delete Forms.

3.5 Subscribe-Down
It is reasonable to consider the ability to subscribe to feeds at any level dominated by the user’s
session level. We call this subscribe-down. For example, from an information flow policy
perspective, a user at high could read a low feed from the cache, regardless of the subscriptions
in the user’s low state slice. One possible interpretation of such a feature is that, while the feed
is at low, the fact that the user has subscribed to it is, itself, classified at high.

In our design, however, subscribe-down gives rise to a pathological scenario in which (say) Se-

cret users are subscribed to an Unclassified feed, to which no Unclassified users are subscribed.
Thus, the Unclassified cache will never be updated. For Unclassified feeds produced by multi-
level services, this poses no problems: a Secret user can request the Unclassified feed from the
multilevel service directly, without caching. For feeds whose source is a single-level network
service, however, caching is integral. For example, if a user has subscribed to a feed on the
Internet while at Secret, it may be the case that this feed is never cached.

This pathological scenario for subscribe-down can be ameliorated. For example, a downgrading
service could retrieve the Unclassified feed names from any Secret subscription list, and pass
this to the Unclassified cache update service; however, since the cache update service is a single-
level subject, this would open a signaling channel. More generally, updating a low cache based
on information at high will ultimately defeat whatever point is intended by subscribing to a feed
at high rather than at low. Thus, we opted for a simpler design, free of channels, that does not
support subscribe-down.

3.6 Input Validation
Whenever an application takes user input, it is important that it be validated. This is necessary
in order to keep the user interface sensible and to avoid security threats [71, pp.174–176]. The
MLS News Reader contains only one form for user input, on the preferences page (Figure 3.2).

25

Validation logic checks that the user input is non-empty, at which point the feed passes through
SimplePie’s feed sanitization logic. In particular, SimplePie strips HTML tags (e.g., blink,
font, marquee) and certain HTML attributes (e.g., bgsound, onmouseover, onerror).
Regardless, the creators of SimplePie provide the disclaimer,

“If you don’t trust the feeds that you’re parsing, you should do your own data
sanitization to avoid security issues. If you DO trust the feeds you’re parsing, this
shouldn’t be an issue [72].”

By design, our whole application is considered untrusted and is effectively sandboxed under the
user’s identity. Thus, the need to sanitize input strictly is largely obviated: a user’s malicious
input can do no greater harm than the user’s permissions already permit.

3.7 User Interface
As per our requirements, the aggregator displays data carrying different security labels and we
must communicate these classifications to the user, as advisory labels. User interfaces for dig-
ital data carrying (possibly) hundreds of different labels have not been sufficiently explored
in the literature, or described by regulation. Most regulations fail to describe marking docu-
ments derived from multiple sources, for anything beyond physical documents with very few
derivative labels [73–75]. It is customary to mark digital media following physical document-
marking regulations, in which parenthetical abbreviations are used to mark the paragraph- and
section-level document structure.

RSS and Atom, by design, separate document structure (XML) from its presentation (handled
by a style sheet or XSLT transform). The convention that user interfaces for data should largely
reflect the structure and format of its source is, at best, naïve, especially when considering
digital publishing. In particular, using parenthetical abbreviations for each subsection fails to
allow rich dynamic content, interfaces that lack section structures, or obscure labels for which
no parenthetical abbreviation system can be adopted. We approach this problem from several
angles in our application.

Each summary box on our main page contains a footer with a color-bordered security label
(see Figure 3.4). The color-coding is customizable by the system administrator; following the
coloration of standard DoD forms (Figure 1.1 on page 2), we chose green for Unclassified,

26

Figure 3.3: The MLS News Reader index page.

blue for Confidential, red for Secret and orange for Top Secret. Currently, all other levels and
categories receive the same a default color, purple.

A random image banner (Figure 3.5) labels information in the same way, while providing links
to relevant news items. Each image is bordered by the label color for the feed from which it
originated. Additionally, when the user’s mouse hovers over the image, a tool tip displays its
security label and feed name.

The index page is organized to most prominently display data associated with the user’s session
level. For example, if the user is logged in at Secret, the summary boxes are ordered such
that Secret summary boxes appear before Unclassified summaries. Further, the left-hand-side

27

Figure 3.4: Summary boxes, color-coded by security labels.

Figure 3.5: Random image banner, color-coded by security label.

navigation auto-opens an accordion list of subscriptions for the current session level, while the
others are closed by default (Figure 3.6 and Figure 3.7). This is intentional for two reasons: (i)
the user is presented with information that is likely most relevant to her, based on her session
level, and (ii) auto-focusing the current level and de-emphasizing others de-clutters the work
environment, when working across many levels.

3.8 Implementation Challenges
The dynamic nature of variable subscriptions and variable feed content added significant com-
plexity to the implementation of the MLS News Reader. For static content, a web designer
may adjust font size and truncate text as needed. When all content is known and static, image
handling is relatively straight-forward. For dynamic content, however, complications arise. The
web designer has little control over the quantity or quality of information fed to the applica-
tion. For example, the aggregator must be able to elegantly handle zero feed subscriptions, or
hundreds of feeds at hundreds of levels.

28

Figure 3.6: Default navigation accor-
dion for a SIM_SECRET session.

Figure 3.7: Navigation accordions,
opened.

A non-exhaustive list of some issues we encountered includes:

- Feeds with no items;
- Feeds with no title;
- Feed titles containing odd characters, all capitals, no spaces (or a combination thereof);
- Feeds with very long descriptions (e.g., over 500 characters);
- Feeds containing tracking logic (requests to 1 pixel GIFs, used to monitor behavior)

Using various exception handling tests, we validated that our implementation handles all of the
above, in an acceptable manner (see Section 3.9).

PHP Limitations
The PHP package supported by MYSEA lacks the GD image processing library and the Al-
ternative PHP Cache (APC). The lack of GD means, in particular, that PHP cannot be used to
resize images. As a result, it was necessary to resize images for the image banner using HTML
and cascading style sheets (CSS). The lack of APC results in less than optimal performance,
upon which we elaborate in Section 5.5.

“Bad” Images
We observed that major online publishers tend to include tracker pixels with their feeds and
feed items. This may be accomplished using feed advertising software, such as feedburner and
pheedo. For example, pheedo claims to “turn your RSS traffic into money” [76]. Sadly, this
wreaks havoc for feed aggregators attempting to extract and display embedded images. Given
that RSS does not provide a clean method of embedding images, it is necessary to scrape images

29

from the description field at the item level. The MLS News Reader fetches these items from the
cache, so embedded image references like instead resemble:

<img src="mlsserver.cisrlabmlstestbed1.com/news/handler_image_

SIM_UNCLASSIFIED.php?i=e39e0c2017f9c7e823494bzffaaffe311">

In other words, the caching logic obscures the image extension. Instead, we scrape the feed
using regular expressions, isolating the reference, and fetch the image
using the getimagesize function in PHP. This requires an HTTP GET request which, on
average, took roughly .3 seconds per image when fetching from the cache (measured using the
microtime function in PHP). As this operation seemed rather costly, we decided to limit the
number of GETs incurred by the random image banner logic (see Appendix D for a sample of
this logic).

3.9 Prototype Testing
We designed the MLS News Reader to handle a variety of feed content, on multiple web
browsers. We developed a test plan, designed to assess if the MLS News Reader satisfies rea-
sonable functional and exception requirements. In particular, our tests are designed to validate:

- Users are able to subscribe to a feed at low and read its contents at high. Additionally,
feeds at high are unavailable at low.

- If an element is displayed outside the context of its source feed, it is marked with the
correct label. For example, items in a feed (e.g., while in chronological view) and images
from a feed (e.g., in the random image banner) are correctly labeled.

- Feeds are labeled correctly and are properly listed in the navigation bar and summary
boxes. This includes validating that unusual text combinations (e.g., long strings of cap-
ital letters without spaces) are not formatted strangely for the user (i.e., long names are
truncated with ellipses, names appear in tool tips properly).

- The preferences view and its forms behave similarly in different browsers. For example,
on Mozilla Firefox and Google Chrome, the “Enter” key can be used to submit the form,
while on Internet Explorer it was necessary to tweak the form with a hidden element in
order to obtain the same functionality.

30

3.9.1 Procedure and Results
The test procedure is provided in Appendix A. The procedure validates the functional properties
of third-party dependencies (i.e., SimplePie) by leveraging existing compatibility tests. Our
prototype MLS News Reader passed all functional and exception tests.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 4:
MLS News Reader Prototype Performance Evaluation

“We affirm that the beauty of the world has been enriched by a new form of beauty:
the beauty of speed.”

–Filippo Tommaso Marinetti [77, p.51]

Our MLS News Reader design precludes the use of several efficient web application practices.
For example, we split user data into a series of flat files and we invoke library routines in artifi-
cial ways to access multiple feed caches. It would almost certainly be faster to keep information
in a single in-memory cache or leverage a single, fast database query engine for all data; how-
ever, such a restructuring would likely require that our web application become trusted. We also
inherit several design choices from MYSEA: the MLS web server spawns an untrusted process
to service each connection, all network access is performed through a trusted MYSEA socket
proxy, etc. In this chapter, we analyze the performance of our design, especially trends related
to scaling across feeds, items and levels.

4.1 Test Strategy
We elected to use Apache JMeter [78] to measure HTTP response and data transfer times, under
a variety of scenarios. For a complete description of our experiment set-up and scenarios, see
Appendix B. Performance test scenarios include:

- Loading feeds at a single level, i.e., at Unclassified.
- Loading feeds at multiple levels, i.e., performing read-down.
- Loading feeds with images, exercising our image banner logic.

We are particularly interested in the average case performance experienced by the end-user, so
the feed cache is pre-populated for all of our tests. Our performance does not reflect the extra
fetching logic that occurs on a cache timeout. Following our design, this case can be handled
by a cache update daemon rather than impact the performance experienced by end users.

All labels and data are simulated, rather than authentic, classified data (thus, SIM_SECRET

rather than Secret). The system is connected to three single-level networks: the Internet and
two (simulated) classified networks. At all other session levels, no other networks are available;

33

0 20 40 60 80 100 120 140

0

20

40

60

Number of Feeds

Ti
m

e
(s

ec
on

ds
)

Index page
Chronological view

Figure 4.1: Loading time vs. number of feeds, at a single level
(for data, see Table 4.1 and Table 4.2).

however, at any level, numerous MLS applications on MYSEA generate feeds. Developing
our experiment infrastructure required automatically generating various feeds and subscriptions
(i.e., default preference files) at each level (see Appendix C). We made no attempt to simu-
late “realistic” user loads or to simulate “realistic” feed data or feed sizes.

4.2 Analysis
We summarize the performance trends we observed in our preliminary analysis. Experiments
were repeated 20 times and observations appeared highly normal; we believe the mean behavior
accurately reflects the major performance trends. We emphasize that our experiments were
performed in a virtualized testbed (rather than on bare metal equipment), using the most recent
version of the prototype MYSEA system (version 5). Thus, it is not fair to draw conclusions
related to absolute performance costs, and we only attempt to characterize performance trends.

4.2.1 Scaling across feeds
We observe that there is near-constant overhead associated with processing feeds and items.
Varying the number of feeds demonstrates very linear behavior (see Figure 4.1). Expectedly,
the cost of loading the index page when feeds have images is marginally greater (~40ms per
feed, in our tests). We further discuss the costs associated with images and the image banner in
Section 4.2.3.

34

No. of feeds Avg time (ms) Data transferred (kb) Throughput (req./min.)
2 1176 1.3 51.0
4 2093 2.0 28.7
8 4049 3.5 14.8
32 15248 12.3 3.9
64 31052 24.1 1.9
128 66151 47.6 0.96

Table 4.1: Index page with text feeds at one level (Test 1, Appendix B).

No. of feeds Avg time (ms) Data transferred (kb) Bandwidth (req./min.)
2 1385 20 43.29
4 2239 34.7 26.79
8 4124 64.1 14.56
16 9042 123 6.63
32 15686 241.6 3.82
64 31779 478 1.89
128 69629 952.3 .8617

Table 4.2: Chronological view with text feeds at one level (Test 5, Appendix B).

No. of feeds Avg time (ms) Data transferred (kb) Throughput (req./min.) Images
2 5268 16 11.39 6
4 6002 23 9.99 6
8 8121 38 7.34 6
16 12465 67.3 4.81 6
32 21219 126 2.83 6
64 38700 243.5 1.55 6
128 76027 478.5 .7892 6

Table 4.3: Index page with image feeds (Test 2, Appendix B).

4.2.2 Scaling across levels
While reading down and combining feeds at multiple levels, we again see a clear linear trend
when dealing with more feeds and items (see Figure 4.2 and Figure 4.3). Interestingly, reading
down appears much faster than reading in a single-level context. In some situations, reading
to two caches takes half the time: for the index page, ~51ms per-feed (single-level) vs. ~27ms
per-feed (multilevel).

35

0 20 40 60 80 100 120 140
0

20

40

60

80

Number of Feeds

Ti
m

e
(s

ec
on

ds
)

Single level index
Multilevel index

Figure 4.2: Index with images, single level vs. multilevel (for
data, see Table 4.3, and Table 4.4).

No. of feeds Avg time (ms) Data transferred (kb) Throughput (req./min.) Images
2 3377 16620.5 17.76 5.8
4 3689 23986.7 16.26 6
8 4443 38498.0 13.50 6
16 6462 67608.1 9.28 6
32 10028 125912.1 5.98 6
64 17374 242651.4 3.45 6
128 32802 476053.2 1.83 6

Table 4.4: Multilevel index page with images (Test 4, Appendix B).

This apparent paradox has a relatively simple explanation. Our single-level experiments are
at Unclassified. Despite the fact that the experiment is designed to pull content exclusively
from cache, the SimplePie library makes a gethostby request per feed. At Unclassified, this
call causes a DNS query to the Internet; at all other levels, the query either fails (the MYSEA
resolver library immediately responds as if a timeout has occurred) or is answered by a local
DNS server on a simulated classified network. Thus, processing Unclassified feeds while at
Unclassified is slightly more expensive than processing the same feeds at a higher level, due to
network effects.

36

0 200 400 600 800 1,000 1,200 1,400

0

20

40

60

Number of Items

Ti
m

e
(s

ec
on

ds
)

Single-level chronological view
Multilevel chronological view

Figure 4.3: Loading time vs. number of feeds, reading one and
two levels (for data, see Table 4.2, and Table 4.5).

No. of feeds Avg Time (ms) Data Transferred (kb) Throughput (req./min.)
2 853 2.1 70.31
4 1487 3.6 40.32
8 2649 6.4 22.64
16 4905 12.3 12.23
32 9873 24 6.08
64 19144 47.5 3.13
128 38791 94.5 1.55

Table 4.5: Multilevel chronological view, no images (Test 6, Appendix B).

We were interested in determining if additional MAC checks by the operating system, or reading
from two different caches, resulted in a system performance bottleneck as we dealt with more
and more feed data. It certainly appears to be no more of a performance bottleneck than in the
single level case. It is likely that all MAC checks and cache requests are equal in cost, and
network topology has a larger impact on performance at higher levels.

4.2.3 Image Banner Performance
The random image banner, while a relatively minor design feature of our aggregator, posed sev-
eral significant implementation challenges during prototype construction, e.g., costs associated

37

0 20 40 60 80 100 120 140

0

20

40

60

80

Number of feeds

Ti
m

e
(s

ec
on

ds
)

Text feeds
Image feeds

Image banner cost

Figure 4.4: Index with text feeds vs “good” images, at single
level (for data, see Table 4.1, and Table 4.3).

No. of feeds Avg time (ms) Data transferred (kb) Throughput (req./min.) Images
2 2937 13.7 20.42 1
4 5038 21.4 11.91 2
8 8940 36.6 6.71 3.7
16 14113 66.4 4.25 3.3
32 23251 125.1 2.58 4.2
64 42423 242.4 1.41 3.7
128 80471 477.2 .7456 4.5

Table 4.6: Index page with mixed “good” and “bad” images, at one level (Test 3, Appendix B).

with searching for images in feeds and filtering-out web bugs. For feeds with many images, this
overhead proved to be costly. A limit was placed on the number of images processed during
banner construction, i.e., the first six appropriate images would be used else the logic terminated
when a limit is reached.

Under optimal conditions, this as a near-constant overhead: ~5760ms for six images (Fig-
ure 4.4), or ~960ms per image. This overhead includes searching feed items for image ref-
erences, performing a GET on the image, and transferring the image to the client. When some
feeds hold images that must be filtered, i.e., some “bad” images, we see this cost jump to

38

0 20 40 60 80 100 120 140

0

20

40

60

80

Number of Feeds

Ti
m

e
(s

ec
on

ds
)

Index with “good” images
Index with “bad” images

Figure 4.5: Index with “good” images vs. index with “bad” im-
ages. Both single level. (For data, see Table 4.3 and Table 4.6).

~7100ms (Figure 4.5), an increase of ~20%. This reflects the fact that “bad” images are smaller
(i.e., like tracking GIFs) and less costly to process, but is most reflective of our test mixture—in
our “mixed” test feeds, with high probability we will process one or two extra images, but it
is very unlikely we will need to process six or more “bad” images. Again, we do not attempt
to simulate the content of a “typical” feed; for some feeds, e.g., cnn.com, tracking pixels are
much more common than “good” images.

Certainly, a user subscribed to 100 feeds is not going to want to wait 50 seconds for a page to
load. Pagination is one promising method to limiting the content processed for the index and
chronological views, improving load time. In Chapter 5, we discuss other methods of improving
performance.

39

0 20 40 60 80 100 120 140

0

20

40

60

Number of feeds

T
hr

ou
gh

pu
t

Test 1 (Index text single)
Test 2 (Index images single)
Test 4 (Index text multi)
Test 5 (Chrono text single)
Test 6 (Chrono text multi)

Figure 4.6: Throughput (requests per minute) for each test.

4.2.4 Throughput
For all of our tests, we see relatively similar throughput curves (Figure 4.6). The more sub-
scriptions (e.g., 128 feeds), the fewer requests can be served, per unit of time. The primary
conclusion is that our application is not bandwidth-limited, but is limited by server-side logic.
Again, pagination and view limits have been removed, artificially, so that all views show as
many feeds as possible. If we were to limit the number of feeds and items displayed, we could
use estimations based on throughput observed in a production multilevel LAN to maximize av-
erage load time. From our observations here, limiting views to no more than ~20 feeds, or no
more than ~200 items, could significantly improve application performance.

40

CHAPTER 5:
Future Work

“The greatest enemy of a good plan, is the dream of a perfect plan”

– Carl von Clausewitz [79]

We discuss some promising strategies which may improve the functionality and performance of
our MLS News Reader prototype.

5.1 State slices supporting complex queries
A flat file database, such as SQLite, could allow us to manage more complex user state infor-
mation. For example, it would be possible to mark certain articles as “read” or to tag feeds with
keywords. The database could also hold user-customization data. For example, a user could
choose to always have cnn.com in her first summary box on the index page, regardless of
level.

5.2 Text Scraping
Currently, resources referenced by a feed (but not in the feed) are unavailable at higher levels,
since that content must be fetched from some single-level network at a level other than the
user’s session. The MLS News Reader caches content contained within the description
tag, but does not fetch the linked article to cache its content. Applications like Instapaper [80]
demonstrate the convenience of scraping text in online articles and storing them for offline
use. It may be challenging for such an application to distinguish between main content and
extraneous information (e.g., advertising, links). It remains to be seen how web publishers will
handle text scrapers as their popularities increase. Instapaper allows publishers to opt out, but
claims that no major publishers have yet chosen to do so [81]. In any event, incorporating this
type of technology could greatly increase the quantity of information served by the MLS News
Reader.

5.3 MYSEA Service Integration
We can envision methods of better facilitating information sharing amongst MYSEA applica-
tions. For instance, a user could click a link on an item within the MLS News Reader, to post a

41

link to the article on the MYSEA microblogging service. This gives the user a simple means of
sharing content with her microblog “followers.” Such “sharing” features already exist in pop-
ular services, such as cnn.com and amazon.com. Increasing the ease with which sharing
takes place among the MYSEA web applications increases the utility of each.

5.4 Re-Aggregation
As mentioned in Section 1.4.5, some aggregators allow a user to re-publish customized feeds.
This can take the form of chronological re-publishing of all feed items, or some selection of
items from the feed. Supporting this feature would present new issues in a multilevel envi-
ronment. For instance, should a user be allowed to mix different levels of information and
re-publish them at the highest level? Or, should the user be restricted to publishing a per-level
feed?

5.5 Performance Enhancements
There are several avenues worth exploring, to improve service performance without re-designing
the MLS News Reader application or the platform on which it runs.

Cache Maintenance.
SimplePie does no maintenance of its cache files. If its cache folder grows too large, this could
degrade performance. In addition to the trusted cron service proposed in Section 2.4, it would
be felicitous to create a single-level cron job to periodically remove older feed cache entries.

Port PHP Enhancements to MYSEA.
An opcode cache in PHP, known as APC, has been shown to increase requests per second
and shorten request time [71, pp.210–215] [82, pp.41–42]. APC is not currently available on
MYSEA’s PHP implementation. Other useful PHP caching mechanisms not currently available
are memcache and tmpfile(). The GD Image Library, also missing in MYSEA’s PHP, is
the standard PHP method of resizing images. Porting this, and leveraging an SQLite database
to mark processed images and store resized images, could improve the random image banner
processing logic.

42

Client-side logic.
Work was started on a JavaScript-based “overlay” which could (quickly) provide a user with
more items from a particular feed. This “quick view” would speed up the ability of the user
to peruse information without cluttering the interface. Similarly, AJAX-powered feed limiting
could limit the up-front costs associated with page loading. Extra feed items could be fetched
asynchronously, after a page has loaded.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

CHAPTER 6:
Conclusions

“Dreams are not what you see in sleep. They are the things that do not let you
sleep.”

–Dr. A.P.J. Abdul Kalam [83]

This thesis explored the relationship of dynamic web content sharing and mandatory informa-
tion flow policies, in the context of MLS web syndication. We have described several concepts
in aggregating labeled web content, and demonstrated that they can be implemented with few
trusted components. To our knowledge, managing labeled, syndicated web content has not
been previously explored in a multilevel context. In particular, managing web content labeled
with more than a few labels has been largely ignored, due to the lack of commercial architec-
tures supporting remote user sessions at arbitrary levels. We validated the concept of multilevel
web syndication by implementing and evaluating a prototype MLS News Reader application,
running on MYSEA, written in PHP and using the popular SimplePie library. Our MLS News
Reader prototype demonstrates the plausibility, utility and complexity of MLS web syndication.
In particular, we shared insights related to the challenges of presenting multilevel information
in a useful and user-friendly manner.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

APPENDIX A:
MLS News Reader Functional and Exception Test Plan

A.1 References
The following is a list of references required to complete the Test Procedure:

1. MLS NEWS READER Test Plan.
2. Current version of MYSEA code.

A.2 Description
This Test Procedure is intended to implement the MLS NEWS READER Test Plan.

A.3 Test Setup
This Test Procedure requires the following setup procedures to have occurred:

1. MYSEA Server Setup.

A.3.1 MYSEA Server Setup
The standard MYSEA demo server setup is used.

A.4 Abbreviations
The following abbreviations are used in this document:

MYSEA_WEBSERVER http://mlsserver.cisrlabmlstestbed1.com

A.5 Functional and Exception Testing Coverage
Specify the browser and version number used in your testing.

• The web browser used during this test:__________________________________

This test procedure should be repeated once per browser. Minimally, test (some version of)
Mozilla Firefox and (some version of) Internet Explorer.

47

A.6 MLS News Reader Functional Test Details
For each test:

• TPE 1 is associated with Client 12.

A.6.1 Functional Test: SimplePie Compatibility Test
Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL:

http://MYSEA_WEBSERVER/news/simplepie/compatibility_test/sp_

compatibility_test.php

4. The status should indicate that all dependencies are satisfied to use the SimplePie library;
in particular, the expected result is the following:

Other libraries may be enabled. The final summary message should read:

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL:

http://MYSEA_WEBSERVER/news/simplepie/compatibility_test/sp_

compatibility_test.php

4. The status should indicate that all dependencies are satisfied to use the SimplePie library;
in particular, the expected result is the following:
4.a. PHP version meets requirements
4.b. XML enabled, sane
4.c. PCRE enabled
4.d. mbstring enabled
4.e. iconv enabled
Other libraries may be enabled. The final summary message should read:

Bottom Line: Yes, you can!
Your webhost has its act together!

2Please note this is adapted to work with our prototype system which had one client and thus one TPE. Fur-
thermore, given that our prototype system did not contain the current version of the blogging software or the
microblogging service, associated test are also omitted.

48

5. Close the web browser.
6. Logout TPE 1.

A.6.2 Functional Test: SimplePie Automated Tests
Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL:

http://MYSEA_WEBSERVER/news/simplepie/test/test.php.
4. The expected result is to pass at least 97% of the automated tests. The following errors

are acceptable (validated on Linux):
4.a. Feed Title: 96% passed (2/52 tests failed)
4.b. First Item Title: 81% passed (18/95 tests failed)
4.c. iTunesRSS: 0% (3/3 tests failed)

5. Close the web browser.
6. Logout TPE 1.

A.6.3 Functional Test: Test feed detection and feed parsing
This tests auto-detection of feeds in MYSEA, and that SimplePie can recognize and parse var-
ious demo feeds. These are as much tests of SimplePie as they are of the feeds on which the
MLS NEWS READER demo relies.

Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL:

http://MYSEA_WEBSERVER/news/simplepie/demo/

4. Input feeds at the following addresses
4.a. cnn.com
4.b. http://MYSEA_WEBSERVER/twiki/bin/view/Main

5. Verify that, for each, a feed title and feed items are listed.
6. Close the web browser.
7. Logout TPE 1.

49

A.6.4 Functional Test: Add a feed, as a new user
This test assumes user cudemo has no subscriptions. This can be assured using the command
rm -rf /home/cudemo/*/.rss executed by madmin on the MYSEA server hosting the
News Service. The current demo setup should, however, be in this configuration already (i.e.,
cudemo has no pre-registered subscriptions in the demo).

Test Instruction

1. Establish a session at SIM_SECRET for cudemo using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page, with no feeds showing.
5. Click ‘Manage Feeds.’
6. Input the address:

http://MYSEA_WEBSERVER/twiki/bin/view/SIM_SECRET

7. Click ‘Subscribe to Feed’ to add the feed.
8. The page should re-fresh, showing this feed as auto-located, named ‘Twiki SIM_SECRET

Web’ and available to be deleted.
9. Click ‘View Feeds’ to return to your list of feeds.

10. This feed should appear in your list of SIM_SECRET feeds, and content from the feed
should appear in a feed summary box.

11. Close the web browser.
12. Logout TPE 2.

A.6.5 Functional Test: Remove the last feed from your list
Test Instruction

1. Establish a session at SIM_SECRET for cudemo using TPE 1.
2. Start a web browser on Client 2.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page with only a single, subscribed
feed, ‘Twiki SIM_SECRET Web’.

5. Click ‘Manage Feeds.’
6. Click the box to select the feed ‘Twiki SIM_SECRET Web’ (the only feed available).
7. Click ‘Unsubscribe from Selected Feeds’ to delete the feed.

50

8. The page should refresh, showing your list of feeds is empty.
9. Click ‘View Feeds’ to return to your list of feeds.

10. Your list of feeds should be empty; no summary boxes should appear on the page.
11. Close the web browser.
12. Logout TPE 2.

A.6.6 Functional Test: Add a feed, to existing feeds
Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page, with pre-subscribed demo
feeds showing.

5. Click ‘Manage Feeds.’
6. Input the address http://MYSEA_WEBSERVER/twiki/bin/view/SIM_UNCLASSIFIED
7. Click ‘Subscribe to Feed’ to add the feed.
8. The page should re-fresh, showing this feed as auto-located, named ‘Twiki SIM_UNCLASSIFIED

Web’ and available to be deleted.
9. Click ‘View Feeds’ to return to your list of feeds.

10. This feed should appear in your list of SIM_UNCLASSIFIED feeds.
11. A new summary box should appear showing this feed.
12. Close the web browser.
13. Logout TPE 1.

A.6.7 Functional Test: Remove a feed
Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page, with multiple subscribed
feeds, one of which is ‘Twiki SIM_UNCLASSIFIED Web’.

5. Click ‘Manage Feeds.’
6. Click the box to select the feed ‘Twiki SIM_UNCLASSIFIED Web.’

51

7. Click ‘Unsubscribe from Selected Feeds’ to delete the feed.
8. The page should re-fresh, showing the feed is no longer in your list of feeds.
9. Click ‘View Feeds’ to return to your list of feeds.

10. This feed should no longer appear in your list of SIM_UNCLASSIFIED feeds.
11. Close the web browser.
12. Logout TPE 1.

A.6.8 Functional Test: Navigating and viewing subscriptions
Test Instruction

1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. Click the ‘All Feeds’ link to view all subscribed feeds.
5. Take a moment to verify the following features of this view:

5.a. Each news item title is accompanied by a favicon for the feed;
5.b. Items are listed in reverse chronological order (new to old);
5.c. Each item has a visible and correct label, appropriately colored;
5.d. Each item contains provenance data (link to source, date published).

6. For each feed in your list of subscribed feeds (in the left-hand navigation menu), click the
link.

7. Take a moment to verify the following features of this view:
7.a. The link navigates to a page displaying items from the selected feed;
7.b. This view shares all the features listed above, in Step 5.

8. Click the ‘Only Feeds at this Level’ link to view all subscribed feeds at your current level.
9. Take a moment to verify the following features of this view:

9.a. Only items at your level are displayed;
9.b. This view shares all the features listed above, in Step 5.

10. Close the web browser.
11. Logout TPE 1.

A.6.9 Functional Test: Read-down to subscriptions
Test Instruction

1. Establish a session at SIM_SECRET for mdemo1 using TPE 1.

52

2. Start a web browser on Client 1.
3. Verify that the left-hand navigation menu shows a list of subscribed feeds for your level,

and for levels below yours.
4. Perform Test Procedure 6.8.1 Steps 3–9.
5. Close the web browser.
6. Logout TPE 1.

A.7 MLS News Reader Exception Test Details
A.7.1 Exception Test: Add a feed with blank address

1. Establish a session at SIM_SECRET for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page; note what feeds are sub-
scribed in the left-hand navigation menu.

5. Click ‘Manage Feeds.’
6. Click ‘Subscribe to Feed’ to add the feed, i.e., without specifying any value in the address

box.
7. The page should re-fresh, showing an error message from the MLS NEWS READER.
8. Click ‘View Feeds’ to return to your list of feeds.
9. Your feed list should be unchanged from Step 4.

10. Close the web browser.
11. Logout TPE 1.

A.7.2 Exception Test: Add a feed with blank address
1. Establish a session at SIM_SECRET for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page; note what feeds are sub-
scribed in the left-hand navigation menu.

5. Click ‘Manage Feeds.’
6. Add whitespace to the address box.
7. Click ‘Subscribe to Feed,’ to add the feed.
8. The page should refresh, showing an error message from the MLS NEWS READER.
9. Click ‘View Feeds’ to return to your list of feeds.

53

10. Your feed list should be unchanged from Step 4.
11. Close the web browser.
12. Logout TPE 1.

A.7.3 Exception Test: Add a feed with invalid address
1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page; note what feeds are sub-
scribed in the left-hand navigation menu.

5. Click ‘Manage Feeds.’
6. Add the invalid address http://foo-nonexist to the address box.
7. Click ‘Subscribe to Feed,’ to add the feed.
8. The page should refresh, showing an error related to this feed.
9. Click ‘View Feeds’ to return to your list of feeds.

10. Your feed list should be unchanged from Step 4.
11. Close the web browser.
12. Logout TPE 1.

A.7.4 Exception Test: Subscribe to a high feed at low (Read-up)
1. Establish a session at SIM_UNCLASSIFIED for mdemo1 using TPE 1.
2. Start a web browser on Client 1.
3. Navigate to the URL http://MYSEA_WEBSERVER/news

4. The expected result is the MLS NEWS READER main page; note what feeds are sub-
scribed in the left-hand navigation menu.

5. Click ‘Manage Feeds.’
6. Add, to the address box, the high address http://MYSEA_WEBSERVER/twiki/

bin/view/SIM_SECRET

7. Click ‘Subscribe to Feed,’ to add the feed.
8. The page should refresh, showing an error related to this feed.
9. Click ‘View Feeds’ to return to your list of feeds.

10. Your feed list should be unchanged from Step 4.
11. Close the web browser.
12. Logout TPE 1.

54

A.7.5 Exception Test: Write-down tests
1. There are no interfaces that allow exception tests to verify write-down. No errors are

provided or displayed when write-down fails, no interfaces are provided to attempt to
update configuration files that are not writeable, etc.

2. This is a placeholder procedure, to note that this category of test is not absent due to any
oversight.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

APPENDIX B:
MLS News Reader Performance Tests

The following details the conditions of the performance tests used to evaluate our prototype
MLS News Reader service. For all tests, we prepare the system in the following manner:

- The cache timeout is artificially increased to ensure that all feeds are fetched from some
single-level cache, and no attempt is made to access the content from remote providers.

- Chronological view paging is disabled, removing the “displayed item limit” from this
view. Thus, all items from every subscribed feed will be read and displayed in this view,
to artificially observe performance across these dimensions.

- The caches are populated with the content for all subscribed feeds. All feeds are hosted
from the MYSEA MLS Web Server, but this is largely irrelevant as content is only fetched
from cache.

- The DSS client is connected, a TPE session is established at the appropriate level, and
Internet Key Exchange (IKE) negotiation occurs to eliminate all one-time setup costs
associated with a MYSEA session.

Tests 1–3 allow us to compare performance at a single level, as we handle different types and
quantities of feeds. Tests 1, 4–5 allow us to compare performance while “reading down” to
items from feeds at different levels. We use the following types of artificially generated test
feeds:

- A text feed is a simple RSS feed (~4,425 bytes in size) containing 10 items, each with a
different timestamp (pubdate). To exercise our chronological sorting logic non-trivially,
dates are chosen at random from 1984–2011; within a feed, dates are sorted in descending
order, with the first item being the most current. When processing text feeds, it follows
that the image banner logic will not perform any GET operations.

- An image feed (or “good” image feed) is a text feed (~4,775 bytes in size) containing 10
items. Each item references a JPEG images (66 kb in size).

- A mixed “bad” feed (or “bad” image feed) is a text feed containing 10 items. Half of
these feeds contain only text (~4,403 bytes in size); the other feeds (~4,753 bytes in size)
each reference five JPEG images (66 kb each in size) and five GIF images (49 bytes each
in size).

57

B.1 Index page tests
For these tests, we evaluate the index page (which provides the summary, or snapshot, view) as
it processes feeds.

Test 1. At Unclassified, load the page subscribed to n text feeds, where n∈{2,4,8,16,32,64,128}.
Test 2. At Unclassified, load the page subscribed to n “good” feeds, where n∈{2,4,8,16,32,64,128}.

In addition to data collected from JMeter, we quantitatively note how many images are in
the random image banner.

Test 3. At Unclassified, load the page subscribed to n mixed “bad” feeds, where n∈{2,4,8,16,32,64,128}.
Test 4. At Secret, load the page subscribed to n Unclassified and n Secret “good” feeds, where

n ∈ {1,2,4,8,16,32,64}. The page will load a total of m feeds with images, where m ∈
{2,4,8,16,32,64,128}.

B.2 Chronological view tests
For these tests, we evaluate the chronological page view, which sorts and displays all feed items.
For these, we use only text feeds.

Test 5. At Unclassified, load the page subscribed to n text feeds, where n∈{2,4,8,16,32,64,128}.
The page will load a total of 10n items.

Test 6. At Secret, load the page subscribed to n Unclassified and n Secret text feeds, where
n ∈ {1,2,4,8,16,32,64}. The page will load a total of m feeds (10m items), where m ∈
{2,4,8,16,32,64,128}.

58

APPENDIX C:
Feeds Used During Performance Testing

The following PHP script was used to generate our test feeds.

<?php

//////////////

// All we have to do here is enter our security label and the type of

// test feed the program can’t (yet) predict what we’re thinking!

//////////////

//////////////

// here we enter our security label

$level = "SIM_" . "UNCLASSIFIED";

// "SIM_UNCLASSIFIED" or "SIM_SECRET" or "SIM_TOP_SECRET" or

// "SIM_NATO_SECRET"

//////////////

//////////////

// Here we enter the type of text feed

// "/text_feed_" = All feeds are all text.

// "/good_feed_" = All feeds contain jpgs.

// "/bad_feed_" = 50% of feeds are all text, the other 50% are 50% jpg,

// 50% gif.

$kind = "/" . "text" . "_feed_";

// "/text_feed_" or "/good_feed_" or "/bad_feed_"

//////////////

//////////////

// Get current working directory so we create our folders

// in the right place

$thisdir = getcwd();

$level_short = substr($level,4,1);

59

// "U" for unclass, "S" for secret, "T" for Top Secret,]

// "N" for Nato Secret

//////////////

$html =

"<!doctype html>

<html>

<head>

<link rel=\"alternate\" type=\"application/rss+xml\" title=\"\" href

=\"feed.xml\"/>

<title>This page has a valid " . $level_short . " RSS feed</title>

</head>

<body>

<h1>This page has a valid " . $level_short . " RSS feed</h1>

Story1

Story2

Story3

Story4

Story5

Story6

Story7

Story8

Story9

Story10

</body>

</html>";

for($m=1; $m<129; $m++)

{

$text_len = strlen("A valid U RSS feed ") + /* strlen($kind) + */

strlen($m);

$url_len = strlen("http://mlsserver.cisrlabmlstestbed1.com/news/tests/"

) + strlen($level) +strlen($kind) + strlen($m) + strlen("/feed.xml"

);

$pref[] = "O:10:\"Pref_Store\":3:{s:9:\"sec_label\";s:" . strlen($level

) . ":\"" . $level . "\";s:4:\"name\";s:" . $text_len . ":\"A valid

" . $level_short . " RSS feed " . $m . "\";s:3:\"url\";s:" .

$url_len . ":\"http://mlsserver.cisrlabmlstestbed1.com/news/tests/"

. $level . $kind . $m . "/feed.xml\";}\n";

60

$feedpre[] = "<?xml version=\"1.0\" encoding=\"utf-8\"?>

<rss version=\"2.0\" xmlns:atom=\"http://www.w3.org/2005/Atom\">

<channel>

<atom:link href=\"http://mlsserver.cisrlabmlstestbed1.com/news/tests/

$level/" . $kind . $m . "/feed.xml\" rel=\"self\" type=\"

application/rss+xml\" />

<title>A valid " . $level_short ." RSS feed " . $m . "</title>

<description>A valid " . $level_short . " RSS feed " . $m . ".</

description>

<link>http://mlsserver.cisrlabmlstestbed1.com/news/tests/" . $level .

$kind . $m . "/index.html</link>";

}

//////////////

// First make 7 folders titled 2, 4, 8, 16, 32, 64, 128

for($i=2; $i<129; $i = $i * 2)

{

//////////////

// If the folder is titled 2 it should have 2 xml feeds within it

// and so on.

for ($x = 1; $x <= $i; $x++)

{

if(strcmp($kind, "/good_feed_") == 0 || strcmp($kind, "/

bad_feed_") == 0)

{

if($x % 2)

{

// Odd-numbered feeds with have images

$pic = "will_be_overwritten";

}

else

{

// Even-numbered feeds will not have images

$pic = "";

}

}

else

{

$pic = "";

}

if(mkdir($thisdir . "/" . $i . "/" . $kind . $x , 0777, true))

{

61

//////////////

// This is our default (preferences) file.

// We create 1 default file per test folder.

//////////////

$handle_default = fopen($thisdir . "/" . $i . "/default", "a");

$time = array();

for($k=0; $k<10; $k++)

{

$time[] = mktime(rand(1,12), rand(1,60), rand(1,60), rand(1,12),

rand(1,28), rand(1984, 2011));

}

rsort($time);

$sort_date = array();

for($l=0; $l<10; $l++)

{

$sort_date[] = date("D, d M Y H:i:s", $time [$l]);

}

$item = array();

for($p=0; $p<10; $p++)

{

if((strcmp($kind, "/bad_feed_") == 0) && ($pic != ""))

{

if($p % 2)

{

$pic = "<img src="" . $level_short . ".jpg" /&

gt;";

}

else

{

$pic = "<img src="" . $level_short . ".gif" /&

gt;";

}

}

else if((strcmp($kind, "/good_feed_") == 0))

{

$pic = "

";

62

}

$item[] = "

<item>

<title>story " . $p . "</title>

<link>http://mlsserver.cisrlabmlstestbed1.com/news/tests/" .

$level . $kind . $x."/index.html</link>

<description>Text of story " . $p. ".

"

. $pic .

"

</description>

<guid>http://mlsserver.cisrlabmlstestbed1.com/news/tests/" .

$level . $kind . $x ."/index.html#story" . $p . "</guid>

<pubDate>" . $sort_date[$p]. " GMT</pubDate>

</item>

";

}

$feedpo = "

</channel>

</rss>";

$handle1 = fopen($thisdir . "/" . $i . "/" . $kind . $x . "/feed.

xml", "a");

$handle2 = fopen($thisdir . "/" . $i . "/" . $kind . $x . "/index.

html", "a");

fwrite($handle1, $feedpre[$x-1]);

for($t=0; $t<10; $t++)

{

fwrite($handle1, $item[$t]);

}

fwrite($handle1, $feedpo);

fwrite($handle2, $html);

if(strcmp($kind, "/good_feed_") == 0 || strcmp($kind, "/

bad_feed_") == 0)

{

$j_image = $level_short . ".jpg";

$g_image = $level_short . ".gif";

$jpg = $thisdir . "/" . $i . "/" . $kind . $x . "/" .

$j_image;

63

$gif = $thisdir . "/" . $i . "/" . $kind . $x . "/" .

$g_image;

copy($j_image, $jpg);

copy($g_image, $gif);

}

}

}

for($t=0; $t<$x; $t++)

{

fwrite($handle_default, $pref[$t-1]);

}

}

echo "done";

?>

64

APPENDIX D:
Random Image Banner Application Logic

The following PHP code shows the logic used to generate our random image banner on the
MLS News Reader’s main page.

<?php

//// begin snippet ////

function img_scraper($string)

{

$string = html_entity_decode($string, ENT_QUOTES, ’UTF-8’);

$pattern_img = ’/<img[^>]+\>/i’;

$pattern_src = ’/src=[\’"]?([^\’" >]+)[\’" >]/’;

$matches = ’’;

if (preg_match($pattern_img, $string , $matches))

{

$string = $matches[0];

if (preg_match($pattern_src, $string, $link))

{

$link = $link[1];

$link = urldecode($link);

$test = parse_url($link);

if (isset($test[’scheme’]) === FALSE)

{

$link = ’http://’. HOST . ’/news/’ . $link;

}

// getimagesize doesn’t seem to work with https.

else if ($test[’scheme’] == ’https’)

{

// $link = str_replace(’https’, ’http’, $link);

return null;

}

return $link;

}

}

return null;

}

//// end snippet ////

//// begin snippet ////

65

// We want both the SimplePie object ($sp[1]) and its

// respective security label ($sp[0]).

$image_array[] = array($sp[0], $sp[1]);

// randomize the order of the feeds

shuffle($image_array);

//// end snippet ////

//// begin snippet ////

if(!empty($image_array))

{

$pics = array();

$counter = 0;

$image_results = array();

$image_descrip = array();

$num_feeds = count($image_array);

$img_feeds = array();

$num_attempts = 0;

$inf_loop_counter = 0;

// If we go through all our feeds, have less than 6 pics,

// and have done less than 10 GETs, we should loop through again

while((count($pics) < 6))

{

foreach($image_array as $key => $value)

{

$num_attempts++;

// break 2 gets us out of the "while" loop

if($num_attempts === 11 || count($pics) === 6 ||

$inf_loop_counter === 33)

{

break 2;

}

$value[1]->get_permalink();

// We pick a random value of an item in the feed

$quant = $value[1]->get_item_quantity();

// If the feed has no items, we skip it for obvious

reasons

66

if($quant === 0)

{

$num_attempts--;

continue;

}

$random_item = rand(1, $quant);

// We check this random value

foreach($value[1]->get_items($random_item) as $item)

{

$image_url= $item->get_permalink();

$image_title= $item->get_title();

$image_descrip = $item->get_description();

$scraped = img_scraper($image_descrip);

// If our image scraper doesn’t find an image,

// we haven’t yet done a costly GET, so can leave

// the feed in $image_array. However, if we only

// had feeds without images, we could end up in

// an infinite loop. So we provide a counter

// to avoid this possibility.

if(!$scraped)

{

$inf_loop_counter++;

$num_attempts--;

if(empty($image_array))

{

break 3;

}

break;

}

if($value[0] === $lev)

{

$size = getimagesize(img_scraper(

$image_descrip));

}

else

// If we’re not at our lowest level,

// we can only take images from the cache

// or from MYSEA services

{

67

if(dirname(img_scraper($image_descrip)) == (

addhttp(HOST) . ’/news’))

{

$size = getimagesize(img_scraper(

$image_descrip));

}

else

{

break;

}

}

if(isset($size))

{

list($width, $height, $type, $attr) = $size;

}

else

{

// If we successfully scrape, but get

// nothing, something weird is going on.

// Since it cost us a GET and we got nothing

// from it, we penalize the feed

// by removing it from our image_array.

unset($image_array[$key]);

// If we have scraped our last feed,

// we need to break out of our while loop and

// call it a day.

if(empty($image_array))

{

break 3;

}

break;

}

// 2 = JPG, 3 = PNG

$good_image = (($type === 2) || ($type === 3));

// 1 = GIF

// Very wide images mess up the formatting

// and small pictures look bad since

// they are expanded.

68

$bad_image = (($type === 1) || ((2 * $height) <

$width) || ($height < 20));

if($good_image && !$bad_image)

{

$pics[] = array(img_scraper($image_descrip),

$image_url, $image_title, $value[0]);

// Remove dupes

// from http://stackoverflow.com/a/946300

$pics = array_map("unserialize", array_unique

(array_map("serialize", $pics)));

// We got a good image from the feed and

// move on to the next feed so as not to

// let one feed monopolize our images.

break;

}

// bad_images and "mystery" images end up here

// and the entire feed gets penalized

// i.e., is removed from the image_array.

// might reconsider removing feeds with

// inconveniently-sized images...

else

{

// remove feed with bad image

// from image_array

unset($image_array[$key]);

if(empty($image_array))

{

break 3;

}

break;

}

}

}

// If we’ve gone through all our feeds and still

// have a few GETs to spare, we reshuffle the

69

// image_array to keep things fresh.

shuffle($image_array);

}

$num_pics = count($pics);

//// end snippet ////

?>

70

REFERENCES

[1] J.R. Clapper. Information sharing. Center for Strategic and International Studies, January
2012. http://csis.org/multimedia/
audio-information-sharing-keynote-speaker-james-clapper.

[2] Department of Defense. DoD Directive No. 8320.02 (Data Sharing in a Net-Centric
Department of Defense), December 2004.

[3] R.J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.
John Wiley & Sons, New York, 2001.

[4] D.E. Denning. A Lattice Model of Secure Information Flow. Communications of the ACM, 19
(5):236–243, 1976.

[5] D.E. Bell and L. LaPadula. Secure Computer System: Unified Exposition and Multics
Interpretation. Technical Report MTR-2997, The MITRE Corporation, March 1976.

[6] T.E. Levin, C.E. Irvine, C. Weissman, and T.D. Nguyen. Analysis of Three Multilevel Security
Architectures. Proc. of the Computer Security Architecture Workshop, pp. 37–46, November
2007.

[7] J. Alves-Foss, W. Harrison, P. Oman, and C. Taylor. The MILS Architecture for
High-Assurance Embedded Systems. International Journal of Embedded Systems, 2(3/4):
239–247, 2006.

[8] M.H. Kang and I. Moskowitz. Design and Assurance Strategy for the NRL Pump. IEEE

Computer, 31(4):56–64, April 1998.
[9] O.S. Saydjari. Multilevel Security: Reprise. IEEE Security & Privacy, 2(5):64–67, 2004.

[10] T. Hinke. The trusted approach to multilevel security. In Proc. of the Computer Security

Applications Conference, pp. 335–341, December 1990.
[11] C.E. Irvine, R.R. Schell, and M.F. Thompson. Using TNI concepts for near-term use of high

assurance database management systems. In Proc. of the Fourth RADC Database Security

Workshop, pp. 335–341, April 1991.
[12] C. Owen, D. Grove, T. Newby, A. Murray, C. North, and M. Pope. PRISM: Program

Replication and Integration for Seamless MILS. In IEEE Symposium on Security and Privacy,
pp. 281–296. IEEE Computer Society, Los Alamitos, CA, USA, 2011.

[13] T. Holzmann, Y. Fu, S. Hirshfield, R. Cunningham, and J. Randall. Commercial cross-domain
XML guard. Technical Report AFRL-IF-RS-TR-2005-380, Air Force Research Lab Rome,
November 2005.

[14] A. Thummel and K. Eckstein. Design and implementation of a file transfer and web services
guard employing cryptographically secured XML security labels. In Proc. of the IEEE

Information Assurance Workshop, pp. 26–33, June 2006.

71

[15] L. Sauer, M. Maschino, J. Morrow, and M. Mayhew. Towards achieving cross domain
information sharing in a SOA-enabled environment using MILS and MLS technologies. In
Proc. of the IEEE Military Communications Conference (MILCOM 2009), pp. 1–5, October
2009.

[16] E. Bersack. Implementation of a HTTP (web) server on a high assurance multilevel secure
platform. Master’s thesis, Naval Postgraduate School, December 2000.

[17] K. L. Ong, T. D. Nguyen, and C. E. Irvine. Implementation of a Multilevel Wiki for
Cross-Domain Collaboration. In Proc. of the 3rd International Conference on Information

Warfare and Security (ICIW 2008), pp. 293–304, 2008.
[18] Yahoo! Media RSS Module. http://video.search.yahoo.com/mrss. Last

accessed 3/3/12.
[19] L. Sikos. Web Standards: Mastering HTML5, CSS3, and XML. Apress, Inc., 2011.

[20] Blogbridge. http://www.blogbridge.com. Last accessed 3/2/11.

[21] Rssowl. http://www.rssowl.org. Last accessed 3/2/11.

[22] Amphetadesk. http://www.disobey.com/amphetades. Last accessed 3/2/11.

[23] AgileRSS. http://www.agilerss.com. Last accessed 3/2/11.

[24] rss2mail. http://www.nongnu.org/rss2mail. Last accessed 3/2/11.

[25] Newspipe. http://newspipe.sourceforge.net. Last accessed 3/2/11.

[26] feed2imap. http://home.gna.org/feed2imap. Last accessed 3/2/11.

[27] PopUrls R© Genuine Aggregator. http://popurls.com. Last accessed 3/3/11.

[28] Planet Mozilla. http://planet.mozilla.org. Last accessed 3/3/11.

[29] Feedweaver. http://feedweaver.net. Last accessed 3/2/11.

[30] xfruits. http://www.xfruits.com. Last accessed 3/2/11.

[31] Blogsieve. http://www.blogsieve.com. Last accessed 2/28/12.

[32] Feedrinse. http://www.feedrinse.com. Last accessed 2/28/12.

[33] Yahoo! Pipes. http://pipes.yahoo.com/pipes. Last accessed 2/28/12.

[34] Bloglines. http://www.bloglines.com. Last accessed 3/2/11.

[35] Google reader. http://reader.google.com. Last accessed 3/2/11.

[36] Feedshow. http://reader.feedshow.com. Last accessed 3/2/11.

[37] feed on feeds. http://feedonfeeds.com. Last accessed 3/2/11.

72

[38] Tiny Tiny RSS. http://tt-rss.org. Last accessed 3/2/11.

[39] zfeeder. http://zvonnews.sourceforge.net. Last accessed 3/2/11.

[40] lylina rss aggregator. http://lylina.sourceforge.net. Last accessed 3/2/11.

[41] Rnews Feed Aggregator. http://rnews.sourceforge.net. Last accessed 3/2/11.

[42] Urchin. http://urchin.sourceforge.net. Last accessed 3/2/11.

[43] Lilina News Aggregator. http://getlilina.org. Last accessed 3/2/11.

[44] Moonmoon. http://moonmoon.org. Last accessed 3/2/11.

[45] My News Crawler. http://www.mynewscrawler.com. Last accessed 3/2/11.

[46] PHP RSS Aggregator Script. http://www.phprssreader.com. Last accessed 3/2/11.

[47] Planet Feed Reader. http://planetplanet.org. Last accessed 3/2/11.

[48] rawdog. http://offog.org/code/rawdog.html. Last accessed 3/2/11.

[49] curn. http://software.clapper.org/curn. Last accessed 3/2/11.

[50] gpodder. http://gpodder.org. Last accessed 3/2/11.
[51] Zhuangzi, S. Hamill, and J.P. Seaton. The Essential Chuang Tzu. Shambhala Publications,

1998.
[52] C.E. Irvine, T.D. Nguyen, D.J. Shifflett, T.E. Levin, J. Khosalim, C. Prince, P.C. Clark, and

M.A. Gondree. MYSEA: the Monterey Security Architecture. In Proc. of the 2009 ACM

workshop on Scalable trusted computing (STC’09), pp. 39–48. ACM, New York, NY, USA,
2009.

[53] T.D. Nguyen, M.A. Gondree, D.J. Shifflett, J. Khosalim, T.E. Levin, and C.E. Irvine. A
Cloud-Oriented Cross-Domain Security Architecture. In Proc. of the IEEE Military

Communications Conference (MILCOM 2010), pp. 441–447, 2010.
[54] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti. Specifying and enforcing access control

policies for XML document sources. World Wide Web, 3(3):139–151, June 2000.
[55] A. Gabillon and E. Bruno. Regulating access to XML documents. In Proc. of the 15th annual

working conference on Database and application security (DAS ’01), pp. 299–314. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[56] M. Kudo and S. Hada. XML document security based on provisional authorization. In Proc. of

the 7th ACM conference on Computer and Communications Security (CCS’00), pp. 87–96.
ACM, New York, NY, USA, 2000.

[57] E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A fine-grained access
control system for XML documents. ACM Transactions on Information and System Security,
5:169–202, May 2002.

73

[58] W. Fan, C.Y. Chan, and M. Garofalakis. Secure XML querying with security views. In Proc.

of the 2004 ACM SIGMOD international conference on Management of data (SIGMOD ’04),
pp. 587–598. ACM, New York, NY, USA, 2004.

[59] J.S. Park and G. Devarajan. Fine-grained and scalable approaches for message integrity. In
Proc. of the 40th Annual Hawaii International Conference on System Sciences (HICSS ’07), p.
280c. IEEE Computer Society, Washington, DC, USA, 2007.

[60] A.G. Stoica and C. Farkas. Secure XML views. In Proc. of the 16th International Conference

on Data and Applications Security (IFIP’02), pp. 133–146, July 2002.
[61] G. Kuper, F. Massacci, and N. Rassadko. Generalized XML security views. In Proc. of the

tenth ACM symposium on Access control models and technologies (SACMAT ’05), pp. 77–84.
ACM, New York, NY, USA, 2005.

[62] S. Oudkerk, I. Bryant, A. Eggen, and R. Haakseth. A proposal for an XML confidentiality
label and related binding of metadata to data objects. In RTO-MP-IST-091: Information

Assurance and Cyber Defence. NATO Research and Technology Organisation, November
2010.

[63] K. Zeilenga. XEP-0258: Security Labels in XMPP.
http://xmpp.org/extensions/xep-0258.html. Last accessed 2/28/12.

[64] P. Millard, P. Saint-Andre, and R. Maijer. XEP-0060: Publish-Subscribe.
http://xmpp.org/extensions/xep-0060.html. Last accessed 2/28/12.

[65] T.H. Hinke and M. Schaefer. Secure Data Management System. Technical Report
RADC-75-266, Systems Development Corporation, November 1975.

[66] National Computer Security Center. A Guide to understanding object reuse in trusted systems.
1992.

[67] A. Wilhelm. Twitter bans repetitive tweets to block spam, October 2009.
http://thenextweb.com/2009/10/14/

twitter-bans-repeat-tweeting-block-spam/. Last accessed 3/1/12.
[68] L. Bouzereau. Star Wars: The Annotated Screenplays. Star Wars Series. Ballantine Books,

1997.
[69] National Academy of Sciences. The 1986 Workshop on Integrated Database Development for

the Building Industry. National Academy Press, Woods Hole, MA, June 1986.
[70] SimplePie. http://simplepie.org. Last accessed 3/1/12.
[71] D. Shafik, L. Mitchell, and M. Turland. PHP Master: Write Cutting Edge Code. O’Reilly &

Associates Inc, 2011.
[72] Simplepie documentation: set_stupidly_fast(). http:

//simplepie.org/wiki/reference/simplepie/set_stupidly_fast. Last
accessed 3/14/2012.

74

[73] The White House. Executive Order No. 13526 (Classified National Security Information), 75
Fed. Reg. 707, January 5, 2010.

[74] Department of Defense. National Industrial Security Program Operating Manual (NISPOM),
February 28, 2006. DoD 5220.22-M.

[75] Information Security Oversight Office. Marking classified national security information,
December 2010.
http://www.archives.gov/isoo/training/marking-booklet.pdf.

[76] pheedo. http://www.pheedo.com. Last accessed 3/4/2012.
[77] L. Rainey, C. Poggi, and L. Wittman. Futurism: An Anthology. Henry McBride Series in

Modernism and Modernity. Yale University Press, 2009.
[78] Apache JMeter. http://jmeter.apache.org. Last accessed 3/17/12.

[79] C.V. Clausewitz, C.F.N. Maude, and J.J. Graham. On War. Wilder Publications, 2008.

[80] Instapaper. http://www.instapaper.com. Last accessed 3/14/2012.
[81] Instapaper: Information for Publishers. http://www.instapaper.com/publishers.

Last accessed 3/14/2012.
[82] B. Savage. The PHP Playbook. Marco Tabini & Associates, Inc., 2011.

[83] A.P.J.A. Kalam and A. Tiwari. Wings of Fire: An Autobiography. Universities Press, 1999.

75

THIS PAGE INTENTIONALLY LEFT BLANK

76

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Steve LaFountain
National Security Agency
Fort Meade, MD

4. Victor Piotrowski, National Science Foundation
Arlington, VA

5. Dr. Mark Orwat
National Reconnaissance Office
Chantilly, VA

6. Dr. Salim Zafar
National Reconnaissance Office
Chantilly, VA

7. Dr. Mark Gondree
Naval Postgraduate School
Monterey, CA

8. Dr. Cynthia E. Irvine
Naval Postgraduate School
Monterey, CA

9. Thuy D. Nguyen
Naval Postgraduate School
Monterey, CA

77

